题解

假如我们非常熟练的看出来,平方和转有序对统计的套路的话,应该就不难了

我们只需要统计(wayA,wayB)生成的序列一样的有序对个数就行

可以用一个\(n^3\)的dp解决

\(dp[i][j][k]\)表示选到第i个,第一个序列用j个上管道的球,第二个序列用了k的上管道的球,要求下一次操作两个球长得一样就可以了

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define RG register
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1024523;
int dp[2][505][505],N,M;
char up[505],down[505];
void update(int &x,int y) {
x = x + y;
if(x >= MOD) x -= MOD;
}
void Solve() {
scanf("%d%d",&N,&M);
scanf("%s",up + 1);scanf("%s",down + 1);
up[N + 1] = 'C';down[M + 1] = 'D';
int cur = 0;
dp[0][0][0] = 1;
for(int i = 0 ; i < N + M ; ++i) {
int t = min(i,N);
memset(dp[cur ^ 1],0,sizeof(dp[cur ^ 1]));
for(int j = 0 ; j <= t ; ++j) {
for(int k = 0 ; k <= t ; ++k) {
if(up[j + 1] == up[k + 1] && j != N && k != N) update(dp[cur ^ 1][j + 1][k + 1],dp[cur][j][k]);
if(up[j + 1] == down[i - k + 1]) update(dp[cur ^ 1][j + 1][k],dp[cur][j][k]);
if(down[i - j + 1] == up[k + 1]) update(dp[cur ^ 1][j][k + 1],dp[cur][j][k]);
if(down[i - j + 1] == down[i - k + 1]) update(dp[cur ^ 1][j][k],dp[cur][j][k]);
}
}
cur ^= 1;
}
out(dp[cur][N][N]);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【BZOJ】1566: [NOI2009]管道取珠的更多相关文章

  1. Bzoj 1566: [NOI2009]管道取珠(DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...

  2. BZOJ.1566.[NOI2009]管道取珠(DP 思路)

    BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...

  3. bzoj 1566: [NOI2009]管道取珠

    Description   Input 第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. ...

  4. bzoj 1566: [NOI2009]管道取珠【dp】

    想不出来想不出来 仔细考虑平方的含义,我们可以把它想成两个人同时操作,最后得到相同序列的情况 然后就比较简单了,设f[t][i][j]为放了t个珠子,A的上方管道到了第i颗珠子,B的上方管道到了第j颗 ...

  5. 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec  Memory Limit: 650 MBSubmit: 1659  Solved: 971 Description In ...

  6. 1566: [NOI2009]管道取珠 - BZOJ

    Description Input第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. 第三行 ...

  7. NOI2009 管道取珠 神仙DP

    原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...

  8. 【题解】NOI2009管道取珠

    又是艰难想题的一晚,又是做不出来的一题 (:д:) 好想哭啊…… 这题最关键的一点还是提供一种全新的想法.看到平方和这种东西,真的不好dp.然而我一直陷在化式子的泥潭中出不来.平方能够联想到什么?原本 ...

  9. bzoj1566: [NOI2009]管道取珠 DP

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...

随机推荐

  1. 通过xshell/securecrt连接linux上传/下载文件

    通过ssh等客户端连接远程linux总会有上传下载的需求,这里分别用Ubuntu和centos展示安装lrzsz软件的命令,使用命令是一致的,这里简单写 1.安装: centos:(注:参数-y中的意 ...

  2. IOC轻量级框架之Autofac

    http://www.cnblogs.com/WeiGe/p/3871451.html http://www.cnblogs.com/hkncd/archive/2012/11/21/2780041. ...

  3. javascript里你绝对用的上的字符分割函数--原创

    // 在数组内字符为未知情况下,合并和分割的解决方案 var data = [['your name', 'myvalue'], ['myr name', 'thivalue']]; function ...

  4. [问题]通过IIS宿主发布WCF服务,客户端添加服务引用出错的解决办法

    环境配置:Web服务器:Windows Server 2008,iis7.5,.net4.0客户端:XPsp3 vs2010 sp1 问题描述:1.确定WCF服务访问地址  http://servic ...

  5. 多角度看.NET面试题

    1.ASP.NET中的身份验证有那些?你当前项目采用什么方式验证请解释        身份验证是从用户获取名称和密码等标识凭证并根据某些机构验证这些凭据的过程.如果凭据有效,则提交该凭据的实体被视为通 ...

  6. Rico Board.1.环境配置

    1.搭建开发环境 1.解压文件 sudo tar -jvxf gcc-linaro-arm-linux-gnueabihf-4.7-2013.03-20130313_liunx.tar.bz2 -C ...

  7. 41 - 数据库-pymysql41 - 数据库-pymysql-DBUtils

    目录 1 Python操作数据库 2 安装模块 3 基本使用 3.1 创建一个连接 3.2 连接数据库 3.3 游标 3.3.1 利用游标操作数据库 3.3.2 事务管理 3.3.3 执行SQL语句 ...

  8. go 流程控制

    if else 语句 基本语法 if condition { //do something } if condition { //do something } else if condition { ...

  9. linux arm mmu基础【转】

    转自:http://blog.csdn.net/xiaojsj111/article/details/11065717 ARM MMU页表框架 先上一张arm mmu的页表结构的通用框图(以下的论述都 ...

  10. redis从入门到放弃 -> 部署方案

    单点部署方案 环境准备: [root@localhost ~]# cat /etc/redhat-release CentOS Linux release 7.2.1511 (Core) [root@ ...