一、题目

Description

Given a number of distinct decimal digits, you can form one integer by choosing a non-empty subset of these digits and writing them in some order. The remaining digits can be written down in some order to form a second integer. Unless the resulting integer is 0, the integer may not start with the digit 0. 

For example, if you are given the digits 0, 1, 2, 4, 6 and 7, you can write the pair of integers 10 and 2467. Of course, there are many ways to form such pairs of integers: 210 and 764, 204 and 176, etc. The absolute value of the difference between the integers in the last pair is 28, and it turns out that no other pair formed by the rules above can achieve a smaller difference.

Input

The first line of input contains the number of cases to follow. For each case, there is one line of input containing at least two but no more than 10 decimal digits. (The decimal digits are 0, 1, ..., 9.) No digit appears more than once in one line of the input. The digits will appear in increasing order, separated by exactly one blank space.

Output

For each test case, write on a single line the smallest absolute difference of two integers that can be written from the given digits as described by the rules above.

Sample Input

1
0 1 2 4 6 7

Sample Output

28

二、思路&心得

  • next_permutation()函数的用法:注意若要得到全排列,则数组应该为有序的
  • 利用dfs + 回溯,再借以辅助数据visit可以找出一组数据的多种组合

三、代码


#include<cstdio>
#include<algorithm>
#define MAX 99999
using namespace std; int nums[11];
int t, len;
char ch; void solve() {
while (t --) {
len = 0;
while (1) {
scanf("%d%c", &nums[len ++], &ch);
if (ch == '\n') break;
}
if (len == 2) {
printf("%d\n", abs(nums[0] - nums[1]));
continue;
}
int num1, num2, ans = MAX;
int mid = len / 2;
do {
num1 = nums[0], num2 = nums[mid];
if (!num1 || !num2) continue;
for (int i = 1; i < mid; i ++) {
num1 = num1 * 10 + nums[i];
}
for (int i = mid + 1; i < len; i ++) {
num2 = num2 * 10 + nums[i];
}
if (abs(num1 - num2) < ans) ans = abs(num1 - num2);
} while (next_permutation(nums, nums + len));
printf("%d\n", ans);
}
} int main() {
scanf("%d", &t);
solve();
return 0;
}

【搜索】POJ-2718 全排列+暴力的更多相关文章

  1. POJ 2718【permutation】

    POJ 2718 问题描述: 给一串数,求划分后一个子集以某种排列构成一个数,余下数以某种排列构成另一个数,求这两个数最小的差,注意0开头的处理. 超时问题:一开始是得到一个数列的组合之后再从中间进行 ...

  2. POJ 2718 Smallest Difference(最小差)

     Smallest Difference(最小差) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 Given a numb ...

  3. poj 2718 Smallest Difference(暴力搜索+STL+DFS)

    Smallest Difference Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6493   Accepted: 17 ...

  4. 穷竭搜索: POJ 2718 Smallest Difference

    题目:http://poj.org/problem?id=2718 题意: 就是输入N组数据,一组数据为,类似 [1  4  5  6  8  9]这样在0~9之间升序输入的数据,然后从这些数据中切一 ...

  5. [暴力搜索] POJ 3087 Shuffle'm Up

    Shuffle'm Up Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10003   Accepted: 4631 Des ...

  6. poj 2718 Smallest Difference(穷竭搜索dfs)

    Description Given a number of distinct , the integer may not start with the digit . For example, , , ...

  7. poj 2718 切数问题 穷竭搜索

    题意: 给一个已经排序号的数字,从中间切一刀,成两个数,要求这两个数的差最小 思路:暴力比较差最小值 stl中的next_permutation()函数进行排列  注意:这个函数必须从小到大才可以排序 ...

  8. 【POJ - 2718】Smallest Difference(搜索 )

    -->Smallest Difference 直接写中文了 Descriptions: 给定若干位十进制数,你可以通过选择一个非空子集并以某种顺序构建一个数.剩余元素可以用相同规则构建第二个数. ...

  9. POJ - 2718 Smallest Difference(全排列)

    题意:将n个数字分成两组,两组分别组成一个数字,问两个数字的最小差值.要求,当组内数字个数多于1个时,组成的数字不允许有前导0.(2<=n<=10,每个数字范围是0~9) 分析: 1.枚举 ...

随机推荐

  1. 【转】Autofac高级用法之动态代理

    原文:http://www.cnblogs.com/stulzq/p/8547839.html 前言 Autofac的DynamicProxy来自老牌的Castle项目.DynamicProxy(以下 ...

  2. Playing audio from Node.js using Edge.js

    http://tomasz.janczuk.org/2014/06/playing-audio-from-nodejs-using-edgejs.html

  3. 复制文件到IDE等工具出现乱码解决方案

    首要的解决方案是设置文件或者项目或者工作空间的编码,可以采用在文件上.项目上右键->properties进行设置 第二种方式是在editplus等编辑器里打开文件,然后打开文件之后点击菜单Fil ...

  4. comet 推送消息到客户端

    weiconfig: <system.web> <httpHandlers> <add path="comet_broadcast.ashx" typ ...

  5. getopt例子

    (本例基于win7 + python3.4) import getopt, sys ''' getopt 模块专门用来处理命令行参数 函数 getopt(args, shortopts, longop ...

  6. Deep Learning综述[上]

    Deep-Learning-Papers-Reading-Roadmap: [1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Dee ...

  7. 会话控制(session和cookie)、跨页面传值

    1.session  登录上一个页面以后,长时间没有操作,刷新页面以后需要重新登录. 特点:(1)session是存储在服务器:   (2)session每个人(登陆者)存一份: (3)session ...

  8. 【转载】ArcBall二维控制三维旋转

    原文:http://oviliazhang.diandian.com/post/2012-05-19/40027878859 由于目前大多的显示器是二维的,要控制三维物体的旋转就显得不那么直接了.Ar ...

  9. 5469: [FJOI2018]领导集团问题

    5469: [FJOI2018]领导集团问题 链接 题意: 要求在一棵树内选一个子集,满足子集内的任意两个点u,v,如果u是v的祖先,那么u的权值小于等于v. 分析: dp[u][i]表示在u的子树内 ...

  10. AGC 005 D - ~K Perm Counting

    D - ~K Perm Counting 链接 题意: 求有多少排列对于每个位置i都满足$|ai−i|!=k$.n<=2000 分析: 容斥+dp. $answer = \sum\limits_ ...