锁对象-Lock: 同步问题更完美的处理方式 (ReentrantReadWriteLock读写锁的使用/源码分析)
Lock是java.util.concurrent.locks包下的接口,Lock 实现提供了比使用synchronized 方法和语句可获得的更广泛的锁定操作,它能以更优雅的方式处理线程同步问题,我们拿Java线程(二)中的一个例子简单的实现一下和sychronized一样的效果,代码如下:
- public class LockTest {
- public static void main(String[] args) {
- final Outputter1 output = new Outputter1();
- new Thread() {
- public void run() {
- output.output("zhangsan");
- };
- }.start();
- new Thread() {
- public void run() {
- output.output("lisi");
- };
- }.start();
- }
- }
- class Outputter1 {
- private Lock lock = new ReentrantLock();// 锁对象
- public void output(String name) {
- // TODO 线程输出方法
- lock.lock();// 得到锁
- try {
- for(int i = 0; i < name.length(); i++) {
- System.out.print(name.charAt(i));
- }
- } finally {
- lock.unlock();// 释放锁
- }
- }
- }
这样就实现了和sychronized一样的同步效果,需要注意的是,用sychronized修饰的方法或者语句块在代码执行完之后锁自动释放,而用Lock需要我们手动释放锁,所以为了保证锁最终被释放(发生异常情况),要把互斥区放在try内,释放锁放在finally内。
如果说这就是Lock,那么它不能成为同步问题更完美的处理方式,下面要介绍的是读写锁(ReadWriteLock),我们会有一种需求,在对数据进行读写的时候,为了保证数据的一致性和完整性,需要读和写是互斥的,写和写是互斥的,但是读和读是不需要互斥的,这样读和读不互斥性能更高些,来看一下不考虑互斥情况的代码原型:
- public class ReadWriteLockTest {
- public static void main(String[] args) {
- final Data data = new Data();
- for (int i = 0; i < 3; i++) {
- new Thread(new Runnable() {
- public void run() {
- for (int j = 0; j < 5; j++) {
- data.set(new Random().nextInt(30));
- }
- }
- }).start();
- }
- for (int i = 0; i < 3; i++) {
- new Thread(new Runnable() {
- public void run() {
- for (int j = 0; j < 5; j++) {
- data.get();
- }
- }
- }).start();
- }
- }
- }
- class Data {
- private int data;// 共享数据
- public void set(int data) {
- System.out.println(Thread.currentThread().getName() + "准备写入数据");
- try {
- Thread.sleep(20);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- this.data = data;
- System.out.println(Thread.currentThread().getName() + "写入" + this.data);
- }
- public void get() {
- System.out.println(Thread.currentThread().getName() + "准备读取数据");
- try {
- Thread.sleep(20);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- System.out.println(Thread.currentThread().getName() + "读取" + this.data);
- }
- }
部分输出结果:
- Thread-1准备写入数据
- Thread-3准备读取数据
- Thread-2准备写入数据
- Thread-0准备写入数据
- Thread-4准备读取数据
- Thread-5准备读取数据
- Thread-2写入12
- Thread-4读取12
- Thread-5读取5
- Thread-1写入12
我们要实现写入和写入互斥,读取和写入互斥,读取和读取互斥,在set和get方法加入sychronized修饰符:
- public synchronized void set(int data) {...}
- public synchronized void get() {...}
部分输出结果:
- Thread-0准备写入数据
- Thread-0写入9
- Thread-5准备读取数据
- Thread-5读取9
- Thread-5准备读取数据
- Thread-5读取9
- Thread-5准备读取数据
- Thread-5读取9
- Thread-5准备读取数据
- Thread-5读取9
我们发现,虽然写入和写入互斥了,读取和写入也互斥了,但是读取和读取之间也互斥了,不能并发执行,效率较低,用读写锁实现代码如下:
- class Data {
- private int data;// 共享数据
- private ReadWriteLock rwl = new ReentrantReadWriteLock();
- public void set(int data) {
- rwl.writeLock().lock();// 取到写锁
- try {
- System.out.println(Thread.currentThread().getName() + "准备写入数据");
- try {
- Thread.sleep(20);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- this.data = data;
- System.out.println(Thread.currentThread().getName() + "写入" + this.data);
- } finally {
- rwl.writeLock().unlock();// 释放写锁
- }
- }
- public void get() {
- rwl.readLock().lock();// 取到读锁
- try {
- System.out.println(Thread.currentThread().getName() + "准备读取数据");
- try {
- Thread.sleep(20);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- System.out.println(Thread.currentThread().getName() + "读取" + this.data);
- } finally {
- rwl.readLock().unlock();// 释放读锁
- }
- }
- }
部分输出结果:
- Thread-4准备读取数据
- Thread-3准备读取数据
- Thread-5准备读取数据
- Thread-5读取18
- Thread-4读取18
- Thread-3读取18
- Thread-2准备写入数据
- Thread-2写入6
- Thread-2准备写入数据
- Thread-2写入10
- Thread-1准备写入数据
- Thread-1写入22
- Thread-5准备读取数据
从结果可以看出实现了我们的需求,这只是锁的基本用法,锁的机制还需要继续深入学习。
ReentrantReadWriteLock读写锁的使用
Lock比传统线程模型中的synchronized方式更加面向对象,与生活中的锁类似,锁本身也应该是一个对象。两个线程执行的代码片段要实现同步互斥的效果,它们必须用同一个Lock对象。
读写锁:分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由jvm自己控制的,你只要上好相应的锁即可。如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁;如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁。总之,读的时候上读锁,写的时候上写锁!
ReentrantReadWriteLock会使用两把锁来解决问题,一个读锁,一个写锁
线程进入读锁的前提条件:
没有其他线程的写锁,
没有写请求或者有写请求,但调用线程和持有锁的线程是同一个
线程进入写锁的前提条件:
没有其他线程的读锁
没有其他线程的写锁
到ReentrantReadWriteLock,首先要做的是与ReentrantLock划清界限。它和后者都是单独的实现,彼此之间没有继承或实现的关系。然后就是总结这个锁机制的特性了:
(a).重入方面其内部的WriteLock可以获取ReadLock,但是反过来ReadLock想要获得WriteLock则永远都不要想。
(b).WriteLock可以降级为ReadLock,顺序是:先获得WriteLock再获得ReadLock,然后释放WriteLock,这时候线程将保持Readlock的持有。反过来ReadLock想要升级为WriteLock则不可能,为什么?参看(a),呵呵.
(c).ReadLock可以被多个线程持有并且在作用时排斥任何的WriteLock,而WriteLock则是完全的互斥。这一特性最为重要,因为对于高读取频率而相对较低写入的数据结构,使用此类锁同步机制则可以提高并发量。
(d).不管是ReadLock还是WriteLock都支持Interrupt,语义与ReentrantLock一致。
(e).WriteLock支持Condition并且与ReentrantLock语义一致,而ReadLock则不能使用Condition,否则抛出UnsupportedOperationException异常。
源码分析: http://blog.csdn.net/yuhongye111/article/details/39055531
锁对象-Lock: 同步问题更完美的处理方式 (ReentrantReadWriteLock读写锁的使用/源码分析)的更多相关文章
- 锁对象Lock-同步问题更完美的处理方式
Lock是java.util.concurrent.locks包下的接口,Lock 实现提供了比使用synchronized 方法和语句可获得的更广泛的锁定操作,它能以更优雅的方式处理线程同步问题,我 ...
- 鸿蒙内核源码分析(互斥锁篇) | 比自旋锁丰满的互斥锁 | 百篇博客分析OpenHarmony源码 | v27.02
百篇博客系列篇.本篇为: v27.xx 鸿蒙内核源码分析(互斥锁篇) | 比自旋锁丰满的互斥锁 | 51.c.h .o 进程通讯相关篇为: v26.xx 鸿蒙内核源码分析(自旋锁篇) | 自旋锁当立贞 ...
- 锁对象Lock
Lock 实现提供了比使用synchronized 方法和语句可获得的更广泛的锁定操作,它能以更优雅的方式处理线程同步问题: public class LockTest { publicstaticv ...
- 构建锁与同步组件的基石AQS:深入AQS的实现原理与源码分析
Java并发包(JUC)中提供了很多并发工具,这其中,很多我们耳熟能详的并发工具,譬如ReentrangLock.Semaphore,它们的实现都用到了一个共同的基类--AbstractQueuedS ...
- Redisson分布式锁学习总结:可重入锁 RedissonLock#lock 获取锁源码分析
原文:Redisson分布式锁学习总结:可重入锁 RedissonLock#lock 获取锁源码分析 一.RedissonLock#lock 源码分析 1.根据锁key计算出 slot,一个slot对 ...
- Java显式锁学习总结之六:Condition源码分析
概述 先来回顾一下java中的等待/通知机制 我们有时会遇到这样的场景:线程A执行到某个点的时候,因为某个条件condition不满足,需要线程A暂停:等到线程B修改了条件condition,使con ...
- Java显式锁学习总结之五:ReentrantReadWriteLock源码分析
概述 我们在介绍AbstractQueuedSynchronizer的时候介绍过,AQS支持独占式同步状态获取/释放.共享式同步状态获取/释放两种模式,对应的典型应用分别是ReentrantLock和 ...
- concurrent(六)同步辅助器CyclicBarrier & 源码分析
参考文档:Java多线程系列--“JUC锁”10之 CyclicBarrier原理和示例:https://www.cnblogs.com/skywang12345/p/3533995.html简介Cy ...
- RedissonLock分布式锁源码分析
最近碰到的一个问题,Java代码中写了一个定时器,分布式部署的时候,多台同时执行的话就会出现重复的数据,为了避免这种情况,之前是通过在配置文件里写上可以执行这段代码的IP,代码中判断如果跟这个IP相等 ...
随机推荐
- GNU构建系统和Autotool
原文:http://os.51cto.com/art/201609/518191.htm 经常使用Linux的开发人员或者运维人员,可能对configure->make->make ins ...
- 报错:Cannot create PoolableConnectionFactory (The server time zone value 'CST' is unrecognized or represents more than one time zone. You must configure either the server or JDBC driver (via the serverT
报错:Cannot create PoolableConnectionFactory (The server time zone value 'CST' is unrecognized or repr ...
- python代码异常范围检查方法(非常实用)
对于python编程的代码,如果需要进行相应的检查其中的错误或者异常,并且确定出现异常语句的大致范围,主要有以下四种方法: 1.第一种方法:遇错即止(告知原因) try ......(所需检查语句) ...
- git查看添加删除远程仓库
查看远程仓库 git remote -v 删除远程仓库 git remote remove origin 添加远程仓库 git remote add origin 仓库地址 关联远程分支 重新关联远程 ...
- bitcoin PoW原理及区块创建过程
bitcoin PoW原理及区块创建过程 PoW 为了在点对点的基础上实现一个分布式时间戳服务器,我们需要使用PoW(Proof of Work)系统来达成共识.PoW过程就是寻找一个目标值的过程,当 ...
- layui数据表格使用(一:基础篇,数据展示、分页组件、表格内嵌表单和图片)
表格展示神器之一:layui表格 前言:在写后台管理系统中使用最多的就是表格数据展示了,使用表格组件能提高大量的开发效率,目前主流的数据表格组件有bootstrap table.layui table ...
- Redis学习(一):CentOS下redis安装和部署
1.基础知识 redis是用C语言开发的一个开源的高性能键值对(key-value)数据库.它通过提供多种键值数据类型来适应不同场景下的存储需求,目前为止redis支持的键值数据类型如下字符串.列表 ...
- js备忘录1
新建对象 赋值和取值操作 var book={ topic:"JavaScript", fat: true }; book.topic 通过点访问 book["fat& ...
- 20172321 2017-2018-2《Java程序设计》第三周学习总结
20172321 2017-2018-2<Java程序设计>第三周学习总结 教材学习内容总结 第三章要点: 要点1 :String类.Random类.Math类和枚举型,这几个是很有用的并 ...
- CS小分队第二阶段冲刺站立会议(6月3日)
昨日成果:完成了主界面按钮移动交换位置 遇到问题:最后的时候发现仅交换了按钮在数据库中的信息,对于按钮的链接忘记交换了 今日计划:解决这个问题,对这个冲刺阶段的成果进行整理