下面简单列举几种常用的推荐系统评测指标:

1、准确率与召回率(Precision & Recall)

准确率召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率;召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率

一般来说,Precision就是检索出来的条目(比如:文档、网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。

正确率、召回率和 F 值是在鱼龙混杂的环境中,选出目标的重要评价指标。不妨看看这些指标的定义先:

1. 正确率 = 提取出的正确信息条数 /  提取出的信息条数

2. 召回率 = 提取出的正确信息条数 /  样本中的信息条数

两者取值在0和1之间,数值越接近1,查准率或查全率就越高。

3. F值  = 正确率 * 召回率 * 2 / (正确率 + 召回率) (F 值即为正确率和召回率的调和平均值)

不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:

正确率 = 700 / (700 + 200 + 100) = 70%

召回率 = 700 / 1400 = 50%

F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%

不妨看看如果把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:

正确率 = 1400 / (1400 + 300 + 300) = 70%

召回率 = 1400 / 1400 = 100%

F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%

由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。

当然希望检索结果Precision越高越好,同时Recall也越高越好,但事实上这两者在某些情况下有矛盾的。比如极端情况下,我们只搜索出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么比如Recall是100%,但是Precision就会很低。因此在不同的场合中需要自己判断希望Precision比较高或是Recall比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。

2、综合评价指标(F-Measure)

P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure(又称为F-Score)。

F-Measure是Precision和Recall加权调和平均

当参数α=1时,就是最常见的F1,也即

可知F1综合了P和R的结果,当F1较高时则能说明试验方法比较有效。

3、E值

E值表示查准率P和查全率R的加权平均值,当其中一个为0时,E值为1,其计算公式:

b越大,表示查准率的权重越大。

4、平均正确率(Average Precision, AP)

平均正确率表示不同查全率的点上的正确率的平均。

原文链接:http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/

本文链接:https://i.cnblogs.com/EditPosts.aspx?postid=8390391

准确率,召回率,F值的更多相关文章

  1. 准确率,召回率,F值,ROC,AUC

    度量表 1.准确率 (presion) p=TPTP+FP 理解为你预测对的正例数占你预测正例总量的比率,假设实际有90个正例,10个负例,你预测80(75+,5-)个正例,20(15+,5-)个负例 ...

  2. 查全率(召回率)、精度(准确率)和F值

    文献中的recall rate(查全率或召回率) and precision(精度)是很重要的概念.可惜很多中文网站讲的我都稀里糊涂,只好用google查了个英文的,草翻如下:召回率和精度定义: 从一 ...

  3. 机器学习笔记--classification_report&精确度/召回率/F1值

    https://blog.csdn.net/akadiao/article/details/78788864 准确率=正确数/预测正确数=P 召回率=正确数/真实正确数=R F1 F1值是精确度和召回 ...

  4. 分类器评估方法:精确度-召回率-F度量(precision-recall-F_measures)

    注:本文是人工智能研究网的学习笔记 Precision和Recall都能够从下面的TP,TN,FP,FN里面计算出来. 几个缩写的含义: 缩写 含义 P condition positive N co ...

  5. 准确率、精确率、召回率、F1

    在搭建一个AI模型或者是机器学习模型的时候怎么去评估模型,比如我们前期讲的利用朴素贝叶斯算法做的垃圾邮件分类算法,我们如何取评估它.我们需要一套完整的评估方法对我们的模型进行正确的评估,如果模型效果比 ...

  6. fashion_mnist 计算准确率、召回率、F1值

    本文发布于 2020-12-27,很可能已经过时 fashion_mnist 计算准确率.召回率.F1值 1.定义 首先需要明确几个概念: 假设某次预测结果统计为下图: 那么各个指标的计算方法为: A ...

  7. 准确率P 召回率R

    Evaluation metricsa binary classifier accuracy,specificity,sensitivety.(整个分类器的准确性,正确率,错误率)表示分类正确:Tru ...

  8. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  9. 机器学习 F1-Score 精确率 - P 准确率 -Acc 召回率 - R

    准确率 召回率 精确率 : 准确率->accuracy, 精确率->precision. 召回率-> recall. 三者很像,但是并不同,简单来说三者的目的对象并不相同. 大多时候 ...

  10. 信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC

    原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常 ...

随机推荐

  1. Chrome 插件推荐

    我在这里就是抛砖引玉,各位开发者,有更好的插件请不要吝啬,分享出来. 希望世界和平! 翻译类 沙拉查词 目前使用,感觉挺好的,各种词典,还有统计.划词划句都可以翻译出来. JSON 格式转换 JSON ...

  2. unity3d中的自定义模型的顶点法线和建模软件中的术语“软硬边”和立方体

    在unity3d中我是想用Mesh生成一个正方体,直到遇到了法线的问题. 我是想显示如下图所示的正方体,却发现法线设置上的问题. 这里我先使用了8个顶点 按照每个顶点一个法线的结果,只能是这样:(也就 ...

  3. Oracle EBS 报表日期格式问题

    1.确保参数日期值集选择:FND_STANDARD_DATE 2.将程序的入口参数选择为 varchar2类型 3.注意输出和游标时参数的截断  to_date(substr(p_DATE_from, ...

  4. 微信网页IOS上传图片旋转解决方案

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. Sqlserver2014 迁移数据库

    由于当初安装sqlserver 的时候选择默认安装的路径,导致现在c盘爆满,安装不了其它软件.因此想到了迁移数据库,网上搜索了一些简介,但是缺少一些步骤,导致数据库附加的时候失败.现总结如下: 1.将 ...

  6. [翻译] GCDObjC

    GCDObjC https://github.com/mjmsmith/gcdobjc GCDObjC is an Objective-C wrapper for the most commonly ...

  7. 我们是如何拿下Google和Facebook Offer的?

    http://posts.careerengine.us/p/57c3a1c1a09633ee7e57803c 大家好,我是小高,CMU CS Master,来Offer第一期学员,2014年初在孙老 ...

  8. php请求页面将返回的页面发送email

    <?php require_once 'CLI_config.php'; require_once dirname(__FILE__).'/../../../../common/framewor ...

  9. zookeeper 快速入门

    分布式系统简介 在分布式系统中另一个需要解决的重要问题就是数据的复制.我们日常开发中,很多人会碰到一个问题:客户端C1更新了一个值K1由V1更新到V2.但是客户端C2无法立即读取到K的最新值.上面的例 ...

  10. Java认证与授权服务JAAS基础概念

    转:http://www.nosqlnotes.com/technotes/jaas-concept/ JAAS是”Java Authentication and Authorization Serv ...