SPOJ8791 DYNALCA LCT

考虑\(LCT\)
不难发现,我们不需要换根...
对于操作\(1\),\(splay(u)\)然后连虚边即可
对于操作\(3\),我们可以先\(access(u)\),然后再\(access(v)\),然后查最后一个虚边变实边的点
对于操作\(2\)
可以选择\(access(u), splay(u)\),然后从\(u\)所在的\(splay\)中删去\(u\)点
也可以选择\(access(u), access(v), splay(u)\),这时,边\((u, v)\)成为虚边,十分好删除
复杂度\(O(n \log n)\)
版本1:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 1e5 + 5;
int n, m;
char s[sid];
int son[sid][2], fa[sid], pra[sid];
#define ls(o) son[(o)][0]
#define rs(o) son[(o)][1]
inline bool isrc(int o) { return rs(fa[o]) == o; }
inline bool isr(int o) { return !fa[o] || (ls(fa[o]) != o && rs(fa[o]) != o); }
inline void rotate(int o) {
int f = fa[o], g = fa[f];
int ro = isrc(o), rf = isrc(f), p = son[o][ro ^ 1];
if(!isr(f)) son[g][rf] = o; son[o][ro ^ 1] = f; son[f][ro] = p;
fa[p] = f; fa[f] = o; fa[o] = g;
}
inline void splay(int o) {
while(!isr(o)) {
int f = fa[o];
if(!isr(f)) rotate(isrc(f) == isrc(o) ? f : o);
rotate(o);
}
}
int lca = 0;
inline void access(int o) {
int lst = 0;
while(o) {
splay(o); rs(o) = lst;
lca = lst = o; o = fa[o];
}
}
int main() {
n = read(); m = read();
rep(i, 1, m) {
int u, v;
scanf("%s", s);
if(s[1] == 'i') {
u = read(); v = read();
splay(u); pra[u] = v; fa[u] = v;
}
else if(s[1] == 'c') {
u = read(); v = read();
access(u); access(v);
printf("%d\n", lca);
}
else if(s[1] == 'u') {
u = read();
access(u); access(pra[u]);
splay(u); fa[u] = 0;
}
}
return 0;
}
版本\(2\):
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 1e5 + 5;
int n, m;
char s[sid];
int son[sid][2], fa[sid], pra[sid];
#define ls(o) son[(o)][0]
#define rs(o) son[(o)][1]
inline bool isrc(int o) { return rs(fa[o]) == o; }
inline bool isr(int o) { return !fa[o] || (ls(fa[o]) != o && rs(fa[o]) != o); }
inline void rotate(int o) {
int f = fa[o], g = fa[f];
int ro = isrc(o), rf = isrc(f), p = son[o][ro ^ 1];
if(!isr(f)) son[g][rf] = o; son[o][ro ^ 1] = f; son[f][ro] = p;
fa[p] = f; fa[f] = o; fa[o] = g;
}
inline void splay(int o) {
while(!isr(o)) {
int f = fa[o];
if(!isr(f)) rotate(isrc(f) == isrc(o) ? f : o);
rotate(o);
}
}
int lca = 0;
inline void access(int o) {
int lst = 0;
while(o) {
splay(o); rs(o) = lst;
lca = lst = o; o = fa[o];
}
}
int main() {
n = read(); m = read();
rep(i, 1, m) {
int u, v;
scanf("%s", s);
if(s[1] == 'i') {
u = read(); v = read();
splay(u); pra[u] = v; fa[u] = v;
}
else if(s[1] == 'c') {
u = read(); v = read();
access(u); access(v);
printf("%d\n", lca);
}
else if(s[1] == 'u') {
u = read();
access(u); splay(u);
ls(u) = fa[ls(u)] = 0;
}
}
return 0;
}
SPOJ8791 DYNALCA LCT的更多相关文章
- spoj DYNALCA - Dynamic LCA
http://www.spoj.com/problems/DYNALCA/ 此题link.cut要求不能换根,当然也保证link时其中一个点必定已经是根. 方法: void link(Node *x, ...
- 一堆LCT板子
搞了一上午LCT,真是累死了-- 以前总觉得LCT高大上不好学不好打,今天打了几遍感觉还可以嘛= =反正现在的水平应付不太难的LCT题也够用了,就这样好了,接下来专心搞网络流. 话说以前一直YY不出来 ...
- 动态树之LCT(link-cut tree)讲解
动态树是一类要求维护森林的连通性的题的总称,这类问题要求维护某个点到根的某些数据,支持树的切分,合并,以及对子树的某些操作.其中解决这一问题的某些简化版(不包括对子树的操作)的基础数据结构就是LCT( ...
- 在此为LCT开一个永久的坑
其实我连splay都还不怎么会. 今天先抄了黄学长的bzoj2049,以后一定要把它理解了. 写LCT怎么能不%数据结构大神yeweining呢?%%%chrysanthemums %%%切掉大森林 ...
- 【BZOJ2157】旅游 LCT
模板T,SB的DMoon..其实样例也是中国好样例...一开始不会复制,yangyang:找到“sample input”按住shift,按page down.... #include <ios ...
- 【BZOJ3669】[Noi2014]魔法森林 LCT
终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...
- 【BZOJ1180】: [CROATIAN2009]OTOCI & 2843: 极地旅行社 LCT
竟然卡了我....忘记在push_down先下传父亲的信息了....还有splay里for():卡了我10min,但是双倍经验还是挺爽的,什么都不用改. 感觉做的全是模板题,太水啦,不能这么水了... ...
- 【BZOJ3282】Tree LCT
1A爽,感觉又对指针重怀信心了呢= =,模板题,注意单点修改时splay就好,其实按吾本意是没写的也A了,不过应该加上能更好维护平衡性. ..还是得加上好= = #include <iostre ...
- BZOJ2888 资源运输(LCT启发式合并)
这道题目太神啦! 我们考虑他的每一次合并操作,为了维护两棵树合并后树的重心,我们只好一个一个的把节点加进去.那么这样一来看上去似乎就是一次操作O(nlogn),但是我们拥有数据结构的合并利器--启发式 ...
随机推荐
- APScheduler API -- apscheduler.triggers.cron
apscheduler.triggers.cron API Trigger alias for add_job(): cron class apscheduler.triggers.cron.Cron ...
- Django 使用mysql 所遇到问题一:Error loading MySQLdb module
在配置完mysql 的配置信息后执行 python manage.py runserver 时出现如下错误.(py3的环境) 解决 在 python2 中,使用 pip install mysql-p ...
- [转]C++ 取代switch的三种方法
1.常规switch enum EnumType { enumOne, enumTwo, enumThree }; void showMessage(int type) { switch(type) ...
- linux可运行的shell脚本与设置开机服务启动(自己总结)
完整的ln命令参考:http://www.runoob.com/linux/linux-comm-ln.html ln :创建连接文件 - 默认创建的是硬连接,好比复制 ,但是两个文件会同步 命令:l ...
- Python使用OpenCV实现简单的人脸检测
文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+P ...
- 【黑客免杀攻防】读书笔记17 - Rootkit基础
1.构建Rootkit基础环境 1.1.构建开发环境 VS2012+WDK8 1.2.构建基于VS2012的调试环境 将目标机.调试机配置在同一个工作组内 sVS2012配置->DRIVER-& ...
- Flask小demo---代码统计系统
功能要求: 管理员登录 # 第一天 班级管理 # 第一天 学生管理 # 第一天 学生登录 上传代码(zip文件和.py文件) 查看个人提交记录列表 highchar统计 学生列表上方使用柱状图展示现班 ...
- centos6.9系统优化
仅供参考 有道云笔记链接->
- 十、springcloud之Consul注销实例
@Autowired //com.ecwid.consul.v1.ConsulClient private ConsulClient consulClient; @PostMapping(" ...
- WebApi Owin SelfHost OAuth2 - 授权服务和资源服务分离方案
使用JWT 参考:http://www.cnblogs.com/grissom007/p/6294746.html