openGL 坐标系的互相转换
openGL坐标系包括旋转,平移,缩放被塞在一个矩阵里面。
坐标系之间的转换基础是矩阵的运算。
每个矩阵代表的坐标系,就是是原点坐标系通过旋转。平移,缩放得到的坐标系。
当一个矩阵右乘一个向量或是还有一个矩阵,意味着把右边的变换。变成相对于左边的矩阵坐标系之上。
假设把一个世界坐标的X转换到一个矩阵上,我们能够矩阵右乘这个坐标:
static float multiplyMX(Matrix4* matrix, float x) {
return matrix->m[0] * x + matrix->m[4] + matrix->m[8] + matrix->m[12];
}
假设把一个世界坐标Y转换到一个矩阵上。我们能够矩阵右乘这个坐标:
static float multiplyMY(Matrix4* matrix, float y) {
return matrix->m[1] + matrix->m[5] * y + matrix->m[9] + matrix->m[13];
}
假设把一个世界坐标点转换到一个矩阵上,我们能够矩阵右乘这个点:
static void multiplyMV4(Matrix4* matrix, float x, float y, float z, float w, Out(Vector4* result)) {
result->v[0] = matrix->m[0] * x + matrix->m[4] * y + matrix->m[8] * z + matrix->m[12] * w;
result->v[1] = matrix->m[1] * x + matrix->m[5] * y + matrix->m[9] * z + matrix->m[13] * w;
result->v[2] = matrix->m[2] * x + matrix->m[6] * y + matrix->m[10] * z + matrix->m[14] * w;
result->v[3] = matrix->m[3] * x + matrix->m[7] * y + matrix->m[11] * z + matrix->m[15] * w;
} static void multiplyMV3(Matrix4* matrix, float x, float y, float z, Out(Vector3* result)) {
result->v[0] = matrix->m[0] * x + matrix->m[4] * y + matrix->m[8] * z + matrix->m[12];
result->v[1] = matrix->m[1] * x + matrix->m[5] * y + matrix->m[9] * z + matrix->m[13];
result->v[2] = matrix->m[2] * x + matrix->m[6] * y + matrix->m[10] * z + matrix->m[14];
} static void multiplyMV2(Matrix4* matrix, float x, float y, Out(Vector2* result)) {
result->v[0] = matrix->m[0] * x + matrix->m[4] * y + matrix->m[8] + matrix->m[12];
result->v[1] = matrix->m[1] * x + matrix->m[5] * y + matrix->m[9] + matrix->m[13];
}
假设把一个世界坐标系转换到一个矩阵上,我们矩阵右乘这个矩阵:
static void multiplyMM(Matrix4* left, Matrix4* right, Out(Matrix4* result)) {
result->m[0] = left->m[0] * right->m[0] + left->m[4] * right->m[1] + left->m[8] * right->m[2] + left->m[12] * right->m[3];
result->m[1] = left->m[1] * right->m[0] + left->m[5] * right->m[1] + left->m[9] * right->m[2] + left->m[13] * right->m[3];
result->m[2] = left->m[2] * right->m[0] + left->m[6] * right->m[1] + left->m[10] * right->m[2] + left->m[14] * right->m[3];
result->m[3] = left->m[3] * right->m[0] + left->m[7] * right->m[1] + left->m[11] * right->m[2] + left->m[15] * right->m[3]; result->m[4] = left->m[0] * right->m[4] + left->m[4] * right->m[5] + left->m[8] * right->m[6] + left->m[12] * right->m[7];
result->m[5] = left->m[1] * right->m[4] + left->m[5] * right->m[5] + left->m[9] * right->m[6] + left->m[13] * right->m[7];
result->m[6] = left->m[2] * right->m[4] + left->m[6] * right->m[5] + left->m[10] * right->m[6] + left->m[14] * right->m[7];
result->m[7] = left->m[3] * right->m[4] + left->m[7] * right->m[5] + left->m[11] * right->m[6] + left->m[15] * right->m[7]; result->m[8] = left->m[0] * right->m[8] + left->m[4] * right->m[9] + left->m[8] * right->m[10] + left->m[12] * right->m[11];
result->m[9] = left->m[1] * right->m[8] + left->m[5] * right->m[9] + left->m[9] * right->m[10] + left->m[13] * right->m[11];
result->m[10] = left->m[2] * right->m[8] + left->m[6] * right->m[9] + left->m[10] * right->m[10] + left->m[14] * right->m[11];
result->m[11] = left->m[3] * right->m[8] + left->m[7] * right->m[9] + left->m[11] * right->m[10] + left->m[15] * right->m[11]; result->m[12] = left->m[0] * right->m[12] + left->m[4] * right->m[13] + left->m[8] * right->m[14] + left->m[12] * right->m[15];
result->m[13] = left->m[1] * right->m[12] + left->m[5] * right->m[13] + left->m[9] * right->m[14] + left->m[13] * right->m[15];
result->m[14] = left->m[2] * right->m[12] + left->m[6] * right->m[13] + left->m[10] * right->m[14] + left->m[14] * right->m[15];
result->m[15] = left->m[3] * right->m[12] + left->m[7] * right->m[13] + left->m[11] * right->m[14] + left->m[15] * right->m[15];
}
这就是利用矩阵, 把一个世界坐标系的坐标,转换到局部坐标系的方法。
那么。怎样把一个局部坐标系转换到世界坐标系呢?
这里须要得到局部坐标系相应矩阵的逆矩阵,这个矩阵包括了还原矩阵操作的变换。
然后,把逆矩阵当做左边的矩阵,去右乘局部坐标点, 我们就能够得到局部坐标变成世界坐标后的坐标。
static bool tryInvert(Matrix4* matrix, Out(Matrix4* result)) {
float a0 = matrix->m[0] * matrix->m[5] - matrix->m[1] * matrix->m[4];
float a1 = matrix->m[0] * matrix->m[6] - matrix->m[2] * matrix->m[4];
float a2 = matrix->m[0] * matrix->m[7] - matrix->m[3] * matrix->m[4];
float a3 = matrix->m[1] * matrix->m[6] - matrix->m[2] * matrix->m[5];
float a4 = matrix->m[1] * matrix->m[7] - matrix->m[3] * matrix->m[5];
float a5 = matrix->m[2] * matrix->m[7] - matrix->m[3] * matrix->m[6]; float b0 = matrix->m[8] * matrix->m[13] - matrix->m[9] * matrix->m[12];
float b1 = matrix->m[8] * matrix->m[14] - matrix->m[10] * matrix->m[12];
float b2 = matrix->m[8] * matrix->m[15] - matrix->m[11] * matrix->m[12];
float b3 = matrix->m[9] * matrix->m[14] - matrix->m[10] * matrix->m[13];
float b4 = matrix->m[9] * matrix->m[15] - matrix->m[11] * matrix->m[13];
float b5 = matrix->m[10] * matrix->m[15] - matrix->m[11] * matrix->m[14]; // Calculate the determinant.
float det = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0; // Close to zero, can't invert.
if (fabs(det) < FLT_EPSILON) {
return false;
} float scalar = 1.0f / det; // Support the case where matrix == result result->m[0] = ( matrix->m[5] * b5 - matrix->m[6] * b4 + matrix->m[7] * b3) * scalar;
result->m[1] = (-matrix->m[1] * b5 + matrix->m[2] * b4 - matrix->m[3] * b3) * scalar;
result->m[2] = ( matrix->m[13] * a5 - matrix->m[14] * a4 + matrix->m[15] * a3) * scalar;
result->m[3] = (-matrix->m[9] * a5 + matrix->m[10] * a4 - matrix->m[11] * a3) * scalar; result->m[4] = (-matrix->m[4] * b5 + matrix->m[6] * b2 - matrix->m[7] * b1) * scalar;
result->m[5] = ( matrix->m[0] * b5 - matrix->m[2] * b2 + matrix->m[3] * b1) * scalar;
result->m[6] = (-matrix->m[12] * a5 + matrix->m[14] * a2 - matrix->m[15] * a1) * scalar;
result->m[7] = ( matrix->m[8] * a5 - matrix->m[10] * a2 + matrix->m[11] * a1) * scalar; result->m[8] = ( matrix->m[4] * b4 - matrix->m[5] * b2 + matrix->m[7] * b0) * scalar;
result->m[9] = (-matrix->m[0] * b4 + matrix->m[1] * b2 - matrix->m[3] * b0) * scalar;
result->m[10] = ( matrix->m[12] * a4 - matrix->m[13] * a2 + matrix->m[15] * a0) * scalar;
result->m[11] = (-matrix->m[8] * a4 + matrix->m[9] * a2 - matrix->m[11] * a0) * scalar; result->m[12] = (-matrix->m[4] * b3 + matrix->m[5] * b1 - matrix->m[6] * b0) * scalar;
result->m[13] = ( matrix->m[0] * b3 - matrix->m[1] * b1 + matrix->m[2] * b0) * scalar;
result->m[14] = (-matrix->m[12] * a3 + matrix->m[13] * a1 - matrix->m[14] * a0) * scalar;
result->m[15] = ( matrix->m[8] * a3 - matrix->m[9] * a1 + matrix->m[10] * a0) * scalar; return true;
}
是的有些矩阵是没有逆矩阵的,所以求逆矩阵的操作会失败。
世界坐标系的意义,就是坐标是相对于原点坐标系的。
局部坐标系的意义。就是坐标不是相对于原点坐标系。而是相对于某个详细的坐标系。
局部坐标系是能够通过上面的方法互相转换的。
那么怎样在局部坐标系之间互相转换呢?
我们无法把一个局部坐标系的坐标,一次就变化成还有一个局部坐标系上。
由于两个不同的局部坐标的坐标。都是相对于各自的坐标系。也就是參考系不同。
但。我们能够,把一个局部坐标系,转换到世界坐标系。以后再从世界坐标系转换到还有一个局部坐标系上。
坐标系转换的意义是什么?
假设我们可以恰当的选取坐标系。在进行坐标计算的时候,会简化非常多运算和思考的模型。
由于一个物体坐标的变化总是在父类坐标之内的,也就是相对于父类坐标系去变化。
这个父类坐标系。要么世界坐标系,要么就是某个详细的坐标系。
而我们这里讨论的坐标转换的模型是这种。
一个坐标终于呈如今屏幕上,我们假设改动了坐标的父坐标系,通过坐标系的转化。而保持这个坐标终于呈现的位置不变。
打一个例如
假设一个坐标(0, 0)在世界坐标系上,终于呈现出来的就是在(0, 0)点处。
我们如今把这个坐标,放到一个在(5, 5)处的坐标系内。这样这个坐标全部的数值都像相对于(5, 5)这个坐标系的。
那么,(0, 0)终于呈现的就是在(5, 5)处了,而不再原来的位置。
我们通过把这个坐标(0, 0)转换到(5, 5)的坐标系里,会得到新的坐标(-5, -5)这是相对于新坐标系的数值。
终于(-5, -5) 会呈如今(0, 0)的位置。
其实,在openGL绘制的时候。我们常常须要在各种不同的坐标系之间互相转换,可能是为了计算动画。可能是为了计算物理碰撞。
openGL 坐标系的互相转换的更多相关文章
- OpenGL坐标系之间的转换 http://blog.csdn.net/sac761/article/details/52179585
1. OpenGL 渲染管线 OpenGL渲染管线分为两大部分,模型观测变换(ModelView Transformation)和投影变换(Projection Transformation).做个比 ...
- cocos2d-x 屏幕坐标系和OPenGL坐标系转换
转自:http://home.cnblogs.com/group/topic/57609.html cocos2d坐标系(OPenGL坐标系):以左下角为原点,x向右,y向上 屏幕坐标系(androi ...
- [OpenGL]OpenGL坐标系和坐标变换
OpenGL通过摄像机的模拟.要实现一个三维计算机图形重大转变,这是几何变换(模型转换-查看转型(两者统称为几何变换)).投影.作物转型.口变换等.同一时候,OpenGL还实现了矩阵堆栈等.理解掌握了 ...
- 各类坐标系相互之间的转换(84互转GC02,GC02互转BD09)
在遥感行业我们经常会用到各类的坐标系相互之间的转换,常见的度分秒转化为度很简单,直接上代码: //经纬度 ////118度48分54.152秒=118+(48/60)+(54.152/3600)=11 ...
- 百度坐标(BD09)、国测局坐标(火星坐标,GCJ02)、和WGS84坐标系之间的转换(JS版代码)
/** * Created by Wandergis on 2015/7/8. * 提供了百度坐标(BD09).国测局坐标(火星坐标,GCJ02).和WGS84坐标系之间的转换 */ //定义一些常量 ...
- ArcGIS中的坐标系定义与转换 (转载)
原文:ArcGIS中的坐标系定义与转换 (转载) 1.基准面概念: GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐 ...
- 百度地图和高德地图坐标系的互相转换 四种Sandcastle方法生成c#.net帮助类帮助文档 文档API生成神器SandCastle使用心得 ASP.NET Core
百度地图和高德地图坐标系的互相转换 GPS.谷歌.百度.高德坐标相互转换 一.在进行地图开发过程中,我们一般能接触到以下三种类型的地图坐标系: 1.WGS-84原始坐标系,一般用国际GPS纪录仪记 ...
- GIS中的坐标系定义与转换
GIS中的坐标系定义与转换 青岛海洋地质研究所 戴勤奋 2002-3-27 14:22:47 ----------------------------------------------------- ...
- OpenGL 坐标与矩阵转换
1. OpenGL 渲染管线 OpenGL渲染管线分为两大部分,模型观测变换(ModelView Transformation)和投影变换(Projection Transformation).做个比 ...
随机推荐
- .NET:CLR via C# Exceptions and State Management
重点学习的个概念 unhandled exceptions constrained execution regions code contracts runtime wrapped exception ...
- Asp.Net中自以为是的Encode
Asp.Net 引擎可能是不错,但是它把程序员想的太笨,会自以为是做很多自动的 Encode 和 Decode,以下文举例: 如果客户端我们 post 了如下的数据, 但是你实际得到的是: 也就是说, ...
- Qt Quick 和qml介绍
很多人不了解Qt Quick和Qml,还有很多人对其存在偏见.这篇文章就是来向这些有困惑的人介绍一下其是什么,有什么特点. 首先,这两个是一个东西吗? 答案:是的.但是,具体来说,Qt Quick是框 ...
- 使用swipemenulistview实现列表的左右滑动
今天从网上找到一个第三方控件swipemenulistview,封装好的一个控件,可以实现列表的左右滑动,模仿qq的列表效果 下载地址为:https://github.com/baoyongzhang ...
- GoLang中flag标签使用
正如其他语言一样,在 linux 系统上通过传入不同的参数来使得代码执行不同逻辑实现不同功能,这样的优点就是执行想要的既定逻辑而不需要修改代码重新编译与打包.在 Golang 语言中也为我们提供了相应 ...
- 使用Zxing开发Air版二维码扫描工具
简介实现的核心要点和几个须要注意的问题: 使用开源类库:Zxing,微信也是用的这个.下载地址:http://code.google.com/p/zxing/ as版:https://github.c ...
- CoCreateInstance(转)
CoCreateInstance 创建组件的最简单的方法是使用CoCreateInstance函数. 在COM库中包含一个用于创建组件的名为CoCreateInstance的函数.此函数需要一个 ...
- COM中的HRESULT
- json树递归js查询json父子节点
上代码,直接另存为html打开,看console控制台就可以看到效果了 <!DOCTYPE html> <html lang="en"> <head& ...
- YOURLS' API
YOURLS' API 特征 生成或获取现有的短URL,带有顺序关键字或自定义关键字获取一些关于你的链接的统计信息:点击链接,点击最少的链接,最新链接输出格式:JSON.XML或简单的原始文本Auth ...