b-树(m阶):

1.根节点至少有2个子节点;

2.中间节点包含k个子节点和k-1个元素,m/2 <= k <= m;

3.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划;

4.每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m;

5.所有叶子节点都在同一层。

b+树(m阶):

在b-树的基础上添加了新的特性:

1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只存储索引,所有数据都保存在叶子节点

2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。

3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素。

b+树相比b-树优点:

1.io次数少:b+树中间节点只存索引,不存在实际的数据,所以可以存储更多的数据。索引树更加的矮胖,io次数更少。
2.性能稳定:b+树数据只存在于叶子节点,查询性能稳定
3.范围查询简单:b+树不需要中序遍历,遍历链表即可

mysql索引:

索引字段要尽量小:通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。

最左匹配特性:当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

过度使用索引的缺点:

1.在创建索引和维护索引 会耗费时间,随着数据量的增加而增加
2.索引文件会占用物理空间,除了数据表需要占用物理空间之外,每一个索引还会占用一定的物理空间
3.当对表的数据进行 INSERT,UPDATE,DELETE 的时候,索引也要动态的维护,这样就会降低数据的维护速度,(建立索引会占用磁盘空间的索引文件。一般情况这个问题不太严重,但如果你在一个大表上创建了多种组合索引,索引文件的会膨胀很快)

b-树和b+树以及mysql索引的更多相关文章

  1. mysql索引数据结构

    什么是索引?索引就是排好序的数据结构,可以帮助我们快速的查找到数据 推荐一个网站,可以演示各种数据结构:https://www.cs.usfca.edu/~galles/visualization/A ...

  2. B+树|MYSQL索引使用原则

    MySQL一直了解得都不多,之前写sql准备提交生产环境之前的时候,老员工帮我检查了下sql,让修改了一下存储引擎,当时我使用的是Myisam,后面改成InnoDB了.为什么要改成这样,之前都没有听过 ...

  3. MySQL索引之B+树

    MySQL索引大都存储在B+树中,除此还有R树和hash索引.B+树的基础还是B树. B树由2部分组成,节点和索引.下面将构建一个B树,每个节点存2个数据,每个节点有前,中,后三个索引.插入数字的顺序 ...

  4. B树、B-树、B+树、B*树【转】,mysql索引

    B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B ...

  5. MySQL索引的原理,B+树、聚集索引和二级索引的结构分析

    索引是一种用于快速查询行的数据结构,就像一本书的目录就是一个索引,如果想在一本书中找到某个主题,一般会先找到对应页码.在mysql中,存储引擎用类似的方法使用索引,先在索引中找到对应值,然后根据匹配的 ...

  6. mysql系列十、mysql索引结构的实现B+树/B-树原理

    一.MySQL索引原理 1.索引背景 生活中随处可见索引的例子,如火车站的车次表.图书的目录等.它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的 ...

  7. MySQL索引的数据结构-B+树介绍

    目录 一.树 二.B+树 2.1 B+树性质 三.聚集索引和辅助索引 3.1 聚集索引 3.2 辅助索引 3.3 聚集索引和非聚集索引的区别 四.再看B+树 4.1 B+树的插入操作 4.2 B+树的 ...

  8. MySQL索引-B+树(看完你就明白了)

    索引是一种数据结构,用于帮助我们在大量数据中快速定位到我们想要查找的数据.索引最形象的比喻就是图书的目录了.注意这里的大量,数据量大了索引才显得有意义,如果我想要在 [1,2,3,4] 中找到 4 这 ...

  9. MySQL索引(二)B+树在磁盘中的存储

    MySQL索引(二)B+树在磁盘中的存储 回顾  上一篇文章<MySQL索引为什么要用B+树>讲了MySQL为什么选择用B+树来作为底层存储结构,提了两个知识点: B+树索引并不能直接找 ...

随机推荐

  1. GitLab使用自定义端口

      Git支持两种地址访问方式,一种是:使用ssh协议,另一种是:使用http协议.   今天在部署Git服务器拉取和上传代码是出现了以下问题ssh: connect to host gitlab.d ...

  2. Metronic-最优秀的基于Bootstrap的响应式网站模版

    在所有我看到过的基于Bootstrap的网站模版中,Metronic是我认为最优秀的,其外观之友好.功能之全面让人惊叹.Metronic 是一个自适应的HTML模版,提供后台管理模版和前端内容网页模版 ...

  3. EasyUI 让dialog中的treegrid的列头固定

    先上效果: 最主要是在treegrid要加上"fit:true "如果不加那么就会用diglog的滚动条,导致treegrid的头就没办法固定. Code<div id=&q ...

  4. 查看.net frameword版本

    官方答案. 具体步骤如下: 1.打开注册表(Win+R,输入regedit): 2.输入注册表路径:HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NET Framewor ...

  5. D - 统计同成绩学生人数

    点击打开链接 读入N名学生的成绩,将获得某一给定分数的学生人数输出.  Input 测试输入包含若干测试用例,每个测试用例的格式为  第1行:N  第2行:N名学生的成绩,相邻两数字用一个空格间隔.  ...

  6. 内置装饰器一:@classmethod、@staticmathod

    使用 @classmethod 和 @staticmathod 后,类的方法的调用 一般来说,要使用某个类的方法,需要先实例化一个对象再调用方法. 而使用@staticmethod或@classmet ...

  7. Code Chef GEOCHEAT(凸包+旋转卡壳+随机化)

    题面 传送门 题解 以下记\(S_i=\{1,2,3,...,i\}\) 我们先用凸包+旋转卡壳求出直径的长度,并记直径的两个端点为\(i,j\)(如果有多条直径随机取两个端点) 因为这个序列被\(r ...

  8. Java CAS ABA问题发生的场景分析

    提到了CAS操作存在问题,就是在CAS之前A变成B又变回A,CAS还是能够设置成功的,什么场景下会出现这个问题呢?查了一些资料,发现在下面的两种情况下会出现ABA问题. 1.A最开始的内存地址是X,然 ...

  9. 【JS深入学习】——事件代理/事件委托

    事件代理/事件委托(event delegation) 需求一:当一个div内部有多个事件发生,给每个元素逐个添加事件十分麻烦... 需求二:在项目中我们常常需要动态的添加元素,不可避免的需要为那些未 ...

  10. python学习笔记04-格式化输出

    使用占位符来进行格式化输出 %S %d %f Exit()  程序退出函数