目录

    • TCP 协议
    • UDP协议
    • TCP和UDP的区别
    • TCP和UDP的使用场景

一 TCP协议

1.TCP的头部格式


理解TCP协议,首要的就是TCP协议的头部格式

·        Source Port和Destination Port:分别占用16位,表示源端口号和目的端口号;用于区别主机中的不同进程,而IP地址是用来区分不同的主机的,源端口号和目的端口号配合上IP首部中的源IP地址和目的IP地址就能唯一的确定一个TCP连接;

·        Sequence Number:用来标识从TCP发端向TCP收端发送的数据字节流,它表示在这个报文段中的的第一个数据字节在数据流中的序号;主要用来解决网络报乱序的问题;

·        Acknowledgment Number:32位确认序列号包含发送确认的一端所期望收到的下一个序号,因此,确认序号应当是上次已成功收到数据字节序号加1。不过,只有当标志位中的ACK标志(下面介绍)为1时该确认序列号的字段才有效。主要用来解决不丢包的问题;

·        Offset:给出首部中32 bit字的数目,需要这个值是因为任选字段的长度是可变的。这个字段占4bit(最多能表示15个32bit的的字,即4*15=60个字节的首部长度),因此TCP最多有60字节的首部。然而,没有任选字段,正常的长度是20字节;

·        TCP Flags:TCP首部中有6个标志比特,它们中的多个可同时被设置为1,主要是用于操控TCP的状态机的,依次为URG,ACK,PSH,RST,SYN,FIN。每个标志位的意思如下:

·        URG:此标志表示TCP包的紧急指针域(后面马上就要说到)有效,用来保证TCP连接不被中断,并且督促中间层设备要尽快处理这些数据;

·        ACK:此标志表示应答域有效,就是说前面所说的TCP应答号将会包含在TCP数据包中;有两个取值:0和1,为1的时候表示应答域有效,反之为0;

·        PSH:这个标志位表示Push操作。所谓Push操作就是指在数据包到达接收端以后,立即传送给应用程序,而不是在缓冲区中排队;

·        RST:这个标志表示连接复位请求。用来复位那些产生错误的连接,也被用来拒绝错误和非法的数据包;

·        SYN:表示同步序号,用来建立连接。SYN标志位和ACK标志位搭配使用,当连接请求的时候,SYN=1,ACK=0;连接被响应的时候,SYN=1,ACK=1;这个标志的数据包经常被用来进行端口扫描。

·        FIN: 表示发送端已经达到数据末尾,也就是说双方的数据传送完成,没有数据可以传送了,发送FIN标志位的TCP数据包后,连接将被断开。这个标志的数据包也经常被用于进行端口扫描。

·       Window:窗口大小,也就是有名的滑动窗口,用来进行流量控制;这是一个复杂的问题,这篇博文中并不会进行总结的;

2.三次握手建立连接

1.     第一次握手:建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;然后,客户端进入SYN_SEND状态,等待服务器的确认;

2.     第二次握手:服务器收到SYN报文段。服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认,设置Acknowledgment Number为x+1(Sequence Number+1);同时,自己自己还要发送SYN请求信息,将SYN位置为1,Sequence Number为y;服务器端将上述所有信息放到一个报文段(即SYN+ACK报文段)中,一并发送给客户端,此时服务器进入SYN_RECV状态;

3.     第三次握手:客户端收到服务器的SYN+ACK报文段。然后将Acknowledgment Number设置为y+1,向服务器发送ACK报文段,这个报文段发送完毕以后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手

3.四次挥手

1. 第一次分手:主机1(可以使客户端,也可以是服务器端),设置Sequence Number和Acknowledgment Number,向主机2发送一个FIN报文段;此时,主机1进入FIN_WAIT_1状态;这表示主机1没有数据要发送给主机2了;

2. 第二次分手:主机2收到了主机1发送的FIN报文段,向主机1回一个ACK报文段,Acknowledgment Number为Sequence Number加1;主机1进入FIN_WAIT_2状态;主机2告诉主机1,我“同意”你的关闭请求;

3. 第三次分手:主机2向主机1发送FIN报文段,请求关闭连接,同时主机2进入LAST_ACK状态;

4. 第四次分手:主机1收到主机2发送的FIN报文段,向主机2发送ACK报文段,然后主机1进入TIME_WAIT状态;主机2收到主机1的ACK报文段以后,就关闭连接;此时,主机1等待2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,主机1也可以关闭连接了。

问题一 为什么需要三次握手?

为了防止已失效的连接请求报文段突然又传送到了服务端,不采用三次握手,会导致服务器处于一直等待发送数据的状态,浪费资源。“已失效的连接请求报文段”的产生在这样一种情况下:client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”

问题二 为什么需要四次分手?

TCP协议是一种面向连接的、可靠的、基于字节流的运输层通信协议。TCP是全双工模式,这就意味着,当主机1发出FIN报文段时,只是表示主机1已经没有数据要发送了,主机1告诉主机2,它的数据已经全部发送完毕了;但是,这个时候主机1还是可以接受来自主机2的数据;当主机2返回ACK报文段时,表示它已经知道主机1没有数据发送了,但是主机2还是可以发送数据到主机1的;当主机2也发送了FIN报文段时,这个时候就表示主机2也没有数据要发送了,就会告诉主机1,我也没有数据要发送了,之后彼此就会愉快的中断这次TCP连接。

二 UDP协议

  1. UDP是一个非连接的协议,传输数据之前源端和终端不建立连接,当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。
  2. 在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度、计算机的能力和传输带宽的限制;在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段。
  3. 由于传输数据不建立连接,因此也就不需要维护连接状态,包括收发状态等,因此一台服务机可同时向更多的客户机传输相同的消息。QQ为例子。
  4. UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。UDP的包头结构:源端口16位,目的端口16位,长度16位以及16位的校验和。
  5. 吞吐量不受拥挤控制算法的调节,只受应用软件生成数据的速率、传输带宽、源端和终端主机性能的限制。UDP使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的链接状态表(这里面有许多参数)。
  6. UDP是面向报文的。发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付给IP层。既不拆分,也不合并,而是保留这些报文的边界,因此,应用程序需要选择合适的报文大小。

我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。

三 TCP和UDP的区别

  1. TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接
  2. TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保 证可靠交付
  3. TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的
  4. UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
  5. 每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
  6. TCP首部开销20字节;UDP的首部开销小,只有8个字节
  7. TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道

四 TCP和UDP使用场景

  TCP用于在传输层有必要实现可靠性传输的情况。由于它是面向有连接并具备顺序控制、重发控制等机制的。所以它可以为应用提供可靠传输。另一方面,UDP主要用于那些对高速传输和实时性有较高要求的通信或广播通信。举一个IP电话进行通话的例子。如果使用TCP,数据在传送途中如果丢失会被重发,但是这样无法流畅地传输通话人的声音,会导致无法进行正常交流。而采用UDP,它不会进行重发处理。从而也就不会有声音大幅度延迟到达的问题。即使有部分数据丢失,也只是影响某一小部分的通话。此外,在多播与广播通信中也使用UDP而不是UDP。RIP、DHCP等基于广播的协议也要依赖于UDP。

参考资料:

  1. TCP协议:http://www.jellythink.com/archives/705
  2. UDP协议:http://www.cnblogs.com/bizhu/archive/2012/05/12/2497493.html
  3. TCP与UDP的区别:http://blog.csdn.net/li_ning_/article/details/52117463

面试:TCP和UDP协议的更多相关文章

  1. TCP与UDP协议

    传输控制协议(Transmission Control Protocol, TCP)和用户数据报协议(User Datagram Protocol, UDP)是典型的传输层协议. 传输层协议基于网络层 ...

  2. TCP和UDP协议的比较

    通信协议 网络通信是两台计算机上的两个进程之间的通信. 网络通信需要通信协议.网络协议有很多种,就像我们平常交流说话,也有多种语言.. 最常见的协议是TCP/IP协议.UDP协议. TCP:TCP 是 ...

  3. 网络编程协议(TCP和UDP协议,黏包问题)以及socketserver模块

    网络编程协议 1.osi七层模型 应用层  表示层  会话层  传输层  网络层  数据链路层  物理层 2.套接字 socket 有两类,一种基于文件类型,一种基于网络类型 3.Tcp和udp协议 ...

  4. TCP 和 UDP 协议

    TCP 和 UDP 协议 一.socket层 Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐 ...

  5. 运输层协议--TCP及UDP协议

    TCP及UDP协议 按照网络的五层分级结构来看,TCP及UDP位于运输层,故TCP及UDP是运输层协议.TCP协议--传输控制协议UDP协议--用户数据报协议 多路复用及多路分解 图多路复用及多路分解 ...

  6. TCP和UDP 协议发送数据包的大小

    在进行UDP编程的时候,我们最容易想到的问题就是,一次发送多少bytes好? 当然,这个没有唯一答案,相对于不同的系统,不同的要求,其得到的答案是不一样的,这里仅对像ICQ一类的发送聊天消息的情况作分 ...

  7. TCP/IP/UDP 协议

    互连网早期的时候,主机间的互连使用的是NCP协议.这种协议本身有很多缺陷,如:不能互连不同的主机,不能互连不同的操作系统,没有纠错功能.为了改善这种缺点,大牛弄出了TCP/IP协议.现在几乎所有的操作 ...

  8. 网络编程协议(TCP和UDP协议,粘包问题)以及socketserver模块

    网络编程协议 1.osi七层模型 应用层  表示层  会话层  传输层  网络层  数据链路层  物理层 2.套接字 socket 有两类,一种基于文件类型,一种基于网络类型 3.Tcp和udp协议 ...

  9. UNP(一):网络编程角度下的TCP、UDP协议

    此博文是学习UNP(UNIX Network Programming)后的读书笔记,供以后自己翻阅回想知识. TCP.UDP概述 在前面<计算机网络与TCP/IP>栏目下已经介绍过一些关于 ...

  10. 深入浅出TCP与UDP协议

    深入浅出TCP与UDP协议 网络协议是每个前端工程师的必修课,TCP/IP协议族是一系列网络协议的总和,而其中两个具有代表性的传输层协议,分别是TCP与UDP,本文将介绍这两者以及他们之间的区别. 一 ...

随机推荐

  1. Delphi Dll 动态调用例子(1)

    http://blog.sina.com.cn/s/blog_62c46c3701010q7h.html 一.编写dll library TestDllByD2007; uses  SysUtils, ...

  2. C++回调:利用函数指针

    #include <iostream> using namespace std; /**************************************************** ...

  3. spring的事务传播属性

    一.Propagation (事务的传播属性) Propagation : key属性确定代理应该给哪个方法增加事务行为.这样的属性最重要的部份是传播行为.有以下选项可供使用:PROPAGATION_ ...

  4. Email feedback to product team about TFS and SharePoint Integration 2017.2.15

    SharePoint与Team Foundation Server的集成,一直是许多研发团队所关注的问题. 通过这种集成,开发团队可以实现下面的几个功能: 1.  搭建一个与团队项目集成的门户网站,并 ...

  5. S11 day 94 RestFramework 之 APIView视图

    VIEW视图(Django自带的) 1.  url url(r'login/$', views.login.as_view()), 2.点开 as_view() , as_view()为类方法.  l ...

  6. neutron openvswitch + vxlan 通讯

  7. Mybatis的cache

    相关类:org.apache.ibatis.executor.CachingExecutor 相关代码: public <E> List<E> query(MappedStat ...

  8. grafana 运行

    1,下载好项目,然后进入到目录 键入: ./bin/grafana-server web 运行 https://www.waitig.com/grafana-config-and-run.html 2 ...

  9. 【JavaScript】call和apply区别及使用方法

    一.方法的定义call方法: 语法:fun.call(thisArg[, arg1[, arg2[, ...]]])定义:调用一个对象的一个方法,以另一个对象替换当前对象.说明:call 方法可以用来 ...

  10. JS: 数据结构与算法之栈

    栈 先来看一道题 Leetcode 32 Longest Valid Parentheses (最长有效括号) 给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度. 示例 ...