Mittag-Leffler分解定理的证明有多种,比如可以利用一维$\overline{\partial}$的解来构造相应的函数,还可以利用极点主部的Taylor多项式来进行修正使得$\sum(g_{n}-P_{n})$在$\mathbb C$上一致收敛来构造函数.

这里要说一下,因为上述级数是一个亚纯函数的级数,是有极点的.所以这里在$K$的收敛,均是指级数$\sum(g_{n}-P_{n})$仅有有限项在$K$中有极点,同时去掉这些项以后所得新的级数收敛.但是无论是哪一种证明,都无法给出函数的具体形式或者具体操作的时候很复杂,都是一种存在性的证明。而如果是下面的情形,那么我们可以给出$f$的具体表达式:

设$f$是$\mathbb C$上的亚纯函数,其极点集为$\{a_{n}\neq0\},n\in\mathbb N$并且每个极点的阶数都是$1$,记$c_{n}=\mathrm{Res}(f,a_{n})$.如果存在一个正则曲线列$\{\gamma_{n}\},n\in\mathbb N$使得$f$在$\bigcup_{n=1}^{\infty}\gamma_{n}$上有界,则$f$有极点分解$$f(z)=f(0)+\sum_{n=1}^{\infty}c_{n}\left(\frac{1}{z-a_{n}}+\frac{1}{a_n}\right)$$

并且右端级数在前文提及的收敛定义下,在$\mathbb C$中内闭一致收敛(即在$\mathbb C\setminus\{a_{n}:n\in\mathbb N\}$上内闭一致收敛).

一个特殊情形的Mittag-Leffler分解的更多相关文章

  1. socket基础实例(一个服务端对应一个客户端情形)

    服务端处理1个客户端的例子 运行结果: (1) while(accept+if(recv)) 情形 执行服务端进程: [root@localhost single_link]# ./server [s ...

  2. Tag recommendaion... 论文中的小例子,使用HOSVD算法推荐

    本文内容来自于论文:Tag recommendations based on tensor dimensioanlity reduction 在社会标签系统中,存在三元关系,用户-物品-标签.这些数据 ...

  3. Java初学者作业——用户输入一个小数,程序分解出整数部分和小数部分。

    返回本章节 返回作业目录 需求说明: 用户输入一个小数,程序分解出整数部分和小数部分. 实现思路: 接收用户控制台输入的小数. 用强制类型转换将整数部分得到. 使用用户输入的小数减去整数部分得到小数部 ...

  4. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  5. 从零开始写一个武侠冒险游戏-8-用GPU提升性能(3)

    从零开始写一个武侠冒险游戏-8-用GPU提升性能(3) ----解决因绘制雷达图导致的帧速下降问题 作者:FreeBlues 修订记录 2016.06.23 初稿完成. 2016.08.07 增加对 ...

  6. 稀疏分解中的MP与OMP算法

    MP:matching pursuit匹配追踪 OMP:正交匹配追踪 主要介绍MP与OMP算法的思想与流程,解释为什么需要引入正交? !!今天发现一个重大问题,是在读了博主的正交匹配追踪(OMP)在稀 ...

  7. hdu_4497GCD and LCM(合数分解)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 GCD and LCM Time Limit: 2000/1000 MS (Java/Other ...

  8. MATLAB矩阵的LU分解及在解线性方程组中的应用

    作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...

  9. SVD分解及线性最小二乘问题

    这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky ...

随机推荐

  1. 利用django创建一个投票网站(三)

    创建你的第一个 Django 项目, 第三部分 这一篇从第二部分(zh)结尾的地方继续讲起.我们将继续编写投票应用,并且聚焦于如何创建公用界面--也被称为"视图". 设计哲学 Dj ...

  2. 关闭SELinux和iptables防火墙

    1.关闭SELinux: 编辑SELinux配置文件: [root@Redis selinux]# vim /etc/selinux/config 修改SELINUX配置项为disable SELIN ...

  3. laypage分页

    1.分页 laypage({ cont:$("#page"), //容器,仅支持id名\原生DOM对象,jquery对象 pages:, //总页数 skip:true, //是否 ...

  4. C#------数字转中文

    转载: http://www.jb51.net/article/8061.htm 方法二: static string ConvertToChinese(double x) { string s = ...

  5. 使用ab对nginx进行压力测试

    nginx以高并发,省内存著称. 相信大多数安装nginx的同学都想知道自己的nginx性能如何. 我想跟大家分享下我使用ab工具的压力测试方法和结果, ab是针对apache的性能测试工具,可以只安 ...

  6. [Unity3D]UI界面之瞄准镜设置说明

    9空格设计 : 比如说4个角的图案固定,拉伸的时候不受影响 通过设置 左上右下来: 通过创建Image对象,将设置好的图片关联到Source Image 调整瞄准镜跟随飞机, 注意这里设置的Z轴向量是 ...

  7. RESTful API URI 设计的一些总结

    非常赞的四篇文章: Resource Naming Best Practices for Designing a Pragmatic RESTful API 撰写合格的 REST API JSON 风 ...

  8. 一些LINQ的使用

    var list = from staff in staffList from extraRecord in extraList where staff.staffID == extraRecord. ...

  9. 操作系统中的P,V操作(转)

    无论是计算机考研.计算机软件水平考试.计算机操作系统期末考试还是其他计算机岗位考试,P.V原语操作都是一个常考点.下面笔者总结了关于P.V操作的一些知识. 信号量是最早出现的用来解决进程同步与互斥问题 ...

  10. 转载:Centos7 从零编译配置Memcached

    序言 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度. Memca ...