Description

一共n×m个硬币,摆成n×m的长方形。dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬币都在它的左上方(可以正左方也可以正上方),并且这个硬币是从反面向上翻成正面向上。dongdong和xixi轮流操作。如果某一方无法操作,那么他(她)就输了。dongdong先进行第一步操作,假设双方都采用最优策略。问dongdong是否有必胜策略。

Input

第一行一个数T,表示他们一共玩T局游戏。
接下来是T组游戏描述。每组游戏第一行两个数n;m,
接下来n行每行m个字符,第i行第j个字符如果是“H”表示第i行第j列的硬币是正面向上,
否则是反面向上。第i行j列的左上方是指行不超过i并且列不超过j的区域。
1≤n;m≤100,1≤T≤50。

Output

对于每局游戏,输出一行。
如果dongdong 存在必胜策略则输出“- -”(不含 引号) 否则输出“= =”(不含引号)。
(注意输出的都是半角符号,即三个符号 ASCII 码分别为45,61,95)

Sample Input

32
3
HHH
HHH
2 3
HHH
TTH
2 1
T
H

Sample Output

= =
- -
- -

Solution

有一个叫$yyb$的神仙她说这个题打表就可以了,于是我就抄了个爽。

首先要知道翻硬币游戏的一个结论。

假设你操作的最右(下)方的硬币必须是正着的,那么局面的$SG$值为局面中每个正面朝上的棋子单一存在时的$SG$值的异或和。

单一存在时$SG$的异或和就可以打表搞了。规律是:(左上角为$(0,0)$)

如果$i=0$且$j=0$,$SG(i,j)=2^{i+j}$。

否则$SG(i,j)=lowbit(i+j+1)$。

可以发现虽然这个$SG$值太大,可他二进制下都只有一位啊,开个$vis$数组记一下就好了。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define N (509)
using namespace std; int T,n,m,flag,vis[N];
char s[N]; int lowbit(int x) {return x&(-x);} int SG(int i,int j)
{
if (i && j) return i+j;
return log2(lowbit(i+j+));
} int main()
{
scanf("%d",&T);
while (T--)
{
flag=;
memset(vis,,sizeof(vis));
scanf("%d%d",&n,&m);
for (int i=; i<n; ++i)
{
scanf("%s",s);
for (int j=; j<m; ++j)
if (s[j]=='T') vis[SG(i,j)]^=;
}
for (int i=; i<n+m-; ++i)
if (vis[i]) flag=;
if (flag) puts("-_-");
else puts("=_=");
}
}

BZOJ1434:[ZJOI2009]染色游戏(博弈论)的更多相关文章

  1. bzoj1434 [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  2. [luogu2594 ZJOI2009]染色游戏(博弈论)

    传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...

  3. 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)

    [BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...

  4. [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  5. BZOJ 1434: [ZJOI2009]染色游戏

    一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...

  6. luogu2594 [ZJOI2009]染色游戏

    做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...

  7. BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 897  Solved: 394[Submit][Status ...

  8. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  9. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

随机推荐

  1. 【拓扑 && 模板】Kosaraju算法

    #include<bits/stdc++.h> using namespace std; ; vector <int> g1[maxn],g2[maxn]; stack < ...

  2. [Linux] Linux系统(文件操作)

    linux有三种文件类型,普通文件,目录,设备文件 查看文件 使用命令ls获取ll,查看文件列表,参数:-l(列表形式),-a(展示隐藏文件) 使用元字符* ? ,查看匹配的文件列表,例如:ll a* ...

  3. Java中接口的特点

    Java接口在1.8之后发生了重大变化.所以谈Java接口特点可以分为1.8版本之前和1.8版本之后. 1.8版本之前的特点: 接口里只能有静态全局常量和public修饰的抽象方法. 为了代码简洁,在 ...

  4. 微软官方公布的Windows 8.1 Update常用快捷键

    以前用 Windows Server 2008R2,初装Win8.1,感觉最明显的是开关机速度真心快~下面摘录了常用的几个快捷键: Windows 键+D:显示或隐藏桌面 Windows键+X:访问Q ...

  5. AJAX异步的 JavaScript

    什么是AJAX: AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法. ...

  6. Django基础七之Ajax

    一 Ajax简介 1.简介 AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步的Javascript和XML”.即使用Javascript语言与服务器进行异 ...

  7. php递归获取分类结构

    商城的菜单通常都是树状结构,我们来模仿实现以下. 原理都是相同的,所以我们来个简单点的结构就行.层级只有两层,有两大类:手机和电脑:每个大类下面分别有三个子类: //从数据库获取的分类数据(省略获取步 ...

  8. ArcGIS10.3+Oracle12C+ArcGIS Server10.3安装布署(之一)

    1.安装Oracle12C 2.配置Oracle12C的PDB监听(1)原始listener.ora文件 改为: (2)原始tnsnames.ora文件 改为: 3.连接Oracle12C的PDB数据 ...

  9. 0ctf2017-babyheap

    前言 又是一道令人怀疑人生的 baby 题. 这道题利用思路非常巧妙,通过 堆溢出 和 fastbin 的机制构造了 information leak, 然后通过 fastbin attack 可以读 ...

  10. java 空语句

    输入的字符不是回车就重新输入: import java.io.IOException; public class HelloWorld { public static void main(String ...