【BZOJ3143】【HNOI2013】游走 高斯消元
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143
我们令$P_i$表示从第i号点出发的期望次数。则$P_n$显然为$0$。
对于$P_2~P_{n-1}$,则有$P_i= \sum \frac{P_j} {d_j}$,其中节点j与节点i有边相连,$d_j$表示节点j的度数。
对于$P_1$,则有$P_i=1+ \sum \frac{P_j} {d_j}$。
不难发现其实就是一个$n$元一次方程组,我们可以通过高斯消元求出每一个$P_i$。
对于一条边$(x,y)$,经过这条边的期望次数为$ \frac {P_x} {d_x} + \frac {P_y} {d_y}$,我们设此值为$p_i$ 。
我们把期望经过次数从大到小排序,则答案为$\sum_{i=1}^{n} p_i \times i$。
然后就做完了。
AC代码如下:
#include<bits/stdc++.h>
#define M 505
using namespace std;
int a[M][M]={},n,m;
double f[M][M]={},p[M]={},du[M]={}; void solve(){
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
double x=f[j][i]/f[i][i];
for(int k=i;k<=n+;k++)
f[j][k]-=x*f[i][k];
}
}
for(int i=n;i;i--){
for(int j=i+;j<=n;j++)
f[i][n+]-=f[i][j]*p[j];
p[i]=f[i][n+]/f[i][i];
}
}
int X[M*M]={},Y[M*M]={}; double hh[M*M]={};
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int x,y; scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=;
du[x]++; du[y]++;
X[i]=x; Y[i]=y;
}
f[][n+]=-; f[n][n]=;
for(int i=;i<n;i++){
f[i][i]=-;
for(int j=;j<=n;j++) if(a[i][j])
f[i][j]=/du[j];
}
solve();
for(int i=;i<=m;i++)
hh[i]=p[X[i]]/du[X[i]]+p[Y[i]]/du[Y[i]];
sort(hh+,hh+m+);
double ans=;
for(int i=;i<=m;i++)
ans+=hh[i]*(m-i+);
printf("%.3lf\n",ans);
}
【BZOJ3143】【HNOI2013】游走 高斯消元的更多相关文章
- BZOJ3143:[HNOI2013]游走(高斯消元)
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- bzoj 3143: [Hnoi2013]游走 高斯消元
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1026 Solved: 448[Submit][Status] ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- Luogu3232 HNOI2013 游走 高斯消元、期望、贪心
传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...
- [HNOI2013][BZOJ3143] 游走 - 高斯消元
题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...
- 【xsy1201】 随机游走 高斯消元
题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
- BZOJ3143 [Hnoi2013]游走 【高斯消元】
题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...
随机推荐
- 【Linux】MySQL配置
安装环境/工具 Linux( centOS 版) MySQL(MySQL-5.6.28-1.el7.x86_64.rpm-bundle.tar版) MySQL的目录结构 安装已经说过了,这里不再说了 ...
- Tomcat之Windows环境下配置多个服务器
在应对多项目多端口的情况配置一个服务器是远不能满足开发条件的.例如微信公众号回调域名只接受80端口,而其他项目一般为默认的8080或者自定义的其他的端口. 废话多说,直入主题 准备条件:tomcat文 ...
- 2018.08.21 NOIP模拟 unlock(模拟+找规律)
unlock 描述 经济危机席卷全球,L国也收到冲击,大量人员失业. 然而,作为L国的风云人物,X找到了自己的新工作.从下周开始,X将成为一个酒店的助理锁匠,当然,他得先向部门领导展示他的开锁能力. ...
- js正则表达式汇集
1.只允许中文.字母.数字.中划线.下划线.空格.中文的().英文的()和#,只能以数字.中文.字母.下划线开头,长度为2至40之间 validateTemplateName: function(va ...
- Linux设置开机启动项
第一种方式:ln -s 建立启动软连接 在Linux中有7种运行级别(可在/etc/inittab文件设置),每种运行级别分别对应着/etc/rc.d/rc[0~6].d这7个目录 Tips:/etc ...
- spark 写 hbase 数据库,遇到Will not attempt to authenticate using SASL (unknown error)
今日在windows上用spark写hbase的函数 saveAsHadoopDataset 写hbase数据库的时候,遇到Will not attempt to authenticate using ...
- 测试-LoadRunner
1录脚本 设置解析方式,html形式,会精炼成一个函数,此时找有用的url,写出函数:url方式,函数比较多. 参数化 两参数成对时,在脚本处选成对. 加上进程,加上返回值判断. 最后一段接口url, ...
- OpenNI检测不到Kinect Camera和Kinect Audio了
?? 只有检测到了Kinect Motor(马达)而马达是微软开发的. 那么PrimeSense出了什么问题呢? 我的系统是Win7 64位的. 是由于电源供电出错.
- (字典树模板)统计难题--hdu--1251
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1251 在自己敲了一遍后终于懂了,这不就用了链表的知识来建立了树,对!就是这样的,然后再查找 代码: #i ...
- Java 连接 Memcached 服务
原文:http://www.runoob.com/memcached/java-memcached.html mac下安装和配置Memcached:http://www.pchou.info/open ...