// 注:本内容为作者原创,禁止在其他网站复述内容以及用于商业盈利,如需引用,请标明出处:http://www.cnblogs.com/lv_anchoret/

Preface

  为了支持光线追踪的学习,决定写一个3D泛型数学库。

  我采用的是windows平台以及C++Template技术

  

  我的库文件组织目录如下

  --lvgm

  ----test

  ------testVec.cpp

  ----type_vec

  ------lv_vec2.h

  ------lv_vec3.h

  ------type_vec.h

  ------vec_inout.h

  ----lv_precision.h

  ----lvgm.h

Ready

  这一篇,需要您了解C++Template的基本语法

      需要您了解向量的运算

  该向量库文件解释:

      二维向量模板类

      三维向量模板类

      数据精度设定

      本库提供的向量相关的默认输出形式设置文件

  该向量库文件暂时没有四元组lv_vec4,我将在之后添加并单独写一篇进行陈述

  该向量库能为您提供的功能:

      对向量内部数据方便自由地调取和设定

      向量的正负

      向量的加减乘除

      向量的自增自减

      向量的索引

      向量判等

      向量的赋值以及复合运算赋值

      向量的范数

      向量的范数平方

      向量的自身单位化

      返回该向量的高精度单位化向量

      向量的内积和外积运算(·、×)

      向量判空

Design

  由于二维和三维的设计相仿,故此处以三维为例进行描述

<1>类型相关

本类中公开定义数据值类型为模板参T,范数精度类型为经外部宏设定的类型——precision, 默认为double

  设计问题:一开始我们可能想到在模板类里面利用宏控制数据存储精度,但你可能会遇到问题。例如:

  1. # ifdef HIGHPRECISION //set the high precision
  2. using norm_t = long double;
  3.  
  4. # elif(defined LOWPRECISION) //set the low preciion
  5. using norm_t = float;
  6.  
  7. # else
  8. using norm_t = double; //default precision
  9.  
  10. # endif //set precision

假设我现在有一个int的三维向量,我想要返回一个实数精度(norm_t)的单位化向量,于是我们写了一个成员函数vec3<norm_t> ret_unit()const,我们在主函数中需要创建一个vec3去接收ret_unit的返回值

那么,我们两手一摊,无可奈何你可能这样做:

  1. vec3<??> normal = intV.ret_unit();

你可能做不到,??可能是vec3::norm_t 吗,显然不是,vec3是一个模板,只能先将vec3<T>中的T特化。突然觉得,模板类中公开公布了精度类型norm_t,但是却用不上??

  解决方案

综合考量到其他类可能也需要精度设定,所以干脆把这设置部分代码单独出来,然后将norm_t 改名为precision,于是问题就解决了

模板类中只需要提前预处理precision文件即可进行如下简单定义:

  1. using norm_t = precision;

而主函数中也方便多了

  1. vec3<precision> normal = intV.ret_unit();

<2>参数类型

我看过glm数学库的源码有一类函数是这么实现的

  1. template <typename T, precision P>
  2. template <typename U>
  3. GLM_FUNC_QUALIFIER tvec3<T, P> & tvec3<T, P>::operator+=(tvec3<U, P> const & v)
  4. {
  5. this->x += static_cast<T>(v.x);
  6. this->y += static_cast<T>(v.y);
  7. this->z += static_cast<T>(v.z);
  8. return *this;
  9. }

其实,意思就是它允许+=另外一种类型的向量,然后我都强转到自身类型T之后进行运算

  解决方案

个人有一拙见,我是下面这样实现的,如果有什么漏洞请邮件或者评论留言。

我可以通过“重载”static_cast,或者进行一些操作使得vec3模板类能够实现类似内置整型之间的隐式自动类型转换

那么,我就不需要设定多个模板参在内部static_cast了。

好,我们这么做就可以了:

  1. template<typename E>
  2. vec3(const vec3<E>& vec); //static_cast

我在定义构造函数的时候支持其他类型的vec3,哪里需要vec3值传递,我就调用它。

<3>对数据进行方便自由的操作

很多数学库貌似可以直接v.x  v.y ,很多C-struct设计,但作为C++党,用C++语言写代码,要严格遵守数据隐藏,在不失语言原则的情况下做到最方便。

1)很多库支持 v.x = 3;

于是我定义:

  1. inline T& x() { return _x; }

但我还是重载了常量版本

  1. inline const T& x()const { return _x; }

我希望对内部数据的修改的禁止令可以通过参数来实现,比如:

  1. template<typename T>
  2. inline vec3<T> operator/(const vec3<T>& v1, const vec3<T>& v2)
  3. {
  4. //the operator of / ,example 3 * 5 -> 15 , (1,2,3) * (2,3,4) -> (1/2,2/3,3/4)
  5. assert(v2.isnull());
  6. return operator/<T, T> (v1, v2);
  7. }

所以,我仅仅去重载v.x()的const版本,而不去禁止x()可修改

2)GLSL中还支持这种骚操作:v.rgb = v.gbr; or v.rg = v1.rg

我看了glm库,它暂时没有实现上述的操作支持

而GLSL库我还没研读

所以,凭着自身粗浅的技术,只能实现获取数据元组,而不能实现修改:

  1. inline vec2<T> xy() { return vec2<T>{_x, _y}; }

<4>运算符设计

按照C++operator普遍的设计原则,依旧是将单目和(复合)赋值运算符重载定义为成员函数,而将双目运算符定义为友元或者外部函数,在本库中采用STL设计原则,定义为命名空间内的类外函数,为了不破坏C++类的封装性

++、--等单目运算符请参见我的另外一篇专门解说运算符重载的文章

此处,我只陈述与vec3类相关的设计细节

关于加减法,从数学角度讲,一个向量加减一个标量是非法的,所以,本库中不支持向量和标量的加减法,对于将每一个元素加同一个值,请用偏移向量进行。

而乘法和除法则支持与标量进行运算,因为一个标量乘以一个向量,只是把向量长度延伸了,在数学上也是合法的。

除此之外,考虑到两个vec3对象进行乘除法,如果this是int其他是另外一个是实数的话,我觉得还是进行精度提升的好,所以有专门的重载,且应用了C++11的自动追踪返回值类型技术

关于%以及%=,从数学角度讲,实数并不支持%运算,只有integer才有,而在图形运算过程中,大多是实数,尽管本库不全应用于图形计算,但是%合法运算在工程项目中占得也并不多,所以,如果需要,请自行将每一个元素进行%,库设计中不会因为极小部分的应用而使库变得臃肿

向量范数以及单位化(标准化)

一个类型设计点:利用用户设定精度类型norm_t定义范数的值类型以及返回的标准化向量模板参。

关于向量单位化,我写了两个,一个是自身单位化,此时遵循本身类型进行,意思就是int进行单位化仍然里面的元素是int。

另一个是返回单位化向量,这个时候是实数向量。

我想陈述的本库相关的设计原则基本完毕。

TEST

测试效果:

  1. △--****************** CONSTRUCTOR TEST ******************
  2.  
  3. ******* ivec3 test *********
  4. there are two ivec3s as intV{ ,-, } and intV2{ , }, the value of which as follows
  5.  
  6. [ , -, ]
  7.  
  8. [ , , ]
  9.  
  10. there is a ivec2 : _2ivec{,}, and a integer to construct a ivec3 as follows
  11.  
  12. the vec2 in front of the integer of : [ , , ]
  13.  
  14. the number of in front of vec2: [ , , ]
  15.  
  16. ******* fvec3 test **********
  17.  
  18. there is a fvec3 as fV{ .f,2.1f, }, the value of which as follows
  19.  
  20. [ , 2.1, ]
  21.  
  22. there is a fvec2 : t{1.2f,}, and a value to construct a ivec3 as follows
  23.  
  24. f2to3 : [ 1.2, , ]
  25.  
  26. △--******************* FUNCTIONS TEST ********************
  27.  
  28. there is a ivec3{, -, }
  29. the operator + or - of ivec3 as follows:
  30.  
  31. + : [ , -, ]
  32. - :[ -, , - ]
  33.  
  34. -----------------------------------------------------------
  35.  
  36. there is a ivec3{, -, }
  37.  
  38. ++ivec3: the val of expression:[ , -, ] the val of ivec3:[ , -, ]
  39.  
  40. ivec3++: the val of expression:[ , -, ] the val of ivec3:[ , -, ]
  41.  
  42. the operator of -- is the same as above
  43.  
  44. -----------------------------------------------------------
  45.  
  46. the operator[] of ivec3 as follows:
  47.  
  48. the intV[] is
  49. -----------------------------------------------------------
  50.  
  51. there are two ivec3s as intV{ ,-, } and intV2{ , }, the value of which as follows
  52.  
  53. intV is not equ to intV2
  54.  
  55. the operator = such that: intV2 = intV; the result as follows:
  56. intV2 is [ , -, ]
  57. intV is equ to intV2
  58.  
  59. there are two ivec3s as intV{ ,-, } and intV2{ , }, the value of which as follows
  60.  
  61. the operator += such that: intV += intV2, the result of which as follows:
  62.  
  63. intV is: [ , -, ]
  64.  
  65. the operator -= such that: intV -= intV2, the result of which as follows:
  66.  
  67. intV is: [ , -, ]
  68.  
  69. the value of intV is to become the original value
  70.  
  71. there are two ivec3s as intV{ ,-, } and intV2{ ,, }, the value of which as follows
  72.  
  73. the operator *= such that: intV *= intV2, the result of which as follows:
  74.  
  75. intV is: [ , -, ]
  76.  
  77. the operator /= such that: intV /= intV2, the result of which as follows:
  78.  
  79. intV is: [ , -, ]
  80.  
  81. the value of intV is to become the original value
  82.  
  83. -----------------------------------------------------------
  84.  
  85. the operator *= (number)such that: intV *= , the result of which as follows:
  86.  
  87. intV is: [ , -, ]
  88.  
  89. the operator /= (number) such that: intV /= , the result of which as follows:
  90.  
  91. intV is: [ , -, ]
  92.  
  93. the value of intV is to become the original value
  94.  
  95. the operator + -、 * 、/ (ivec3 or number) is the same as above
  96.  
  97. -----------------------------------------------------------
  98.  
  99. the operator* between ivec3 and fvec3 as follows:
  100.  
  101. there is a ivec3: intV{,-,}, there is a fvec3: fV{1.1f,2.3f,3.8f}, and the result of ivec3*fvec3 as follows:
  102.  
  103. res is: [ 1.1, -4.6, 11.4 ]
  104.  
  105. the result of * is up to the higher precision of both
  106.  
  107. the operator* between ivec3 and float as follows:
  108.  
  109. there is a ivec3: intV{,-,}, there is a float: 3.14, and the result of ivec3*3.14 as follows:
  110.  
  111. res2 is: [ , -, ]
  112.  
  113. the type of ivec3 * float is not fvec3 but ivec3, and the factor is just a factor that shouldn't change the vec's precision
  114. if you need the result's type to become fvec3,you should use static_cast<fvec3>(intV) * float
  115.  
  116. res3 is: [ 3.14, -6.28, 9.42 ]
  117.  
  118. the operator/ between different type is the same as above
  119.  
  120. -----------------------------------------------------------
  121.  
  122. the normal() test as follows:
  123.  
  124. there is a ivec3: intV{,-,}
  125.  
  126. the Norm of intV is: 3.74166
  127.  
  128. there is a fvec3: fV{ 1.1, 2.3, 3.5}
  129.  
  130. the Norm of fV is: 4.57602
  131.  
  132. -----------------------------------------------------------
  133.  
  134. there is a ivec3: intV{, , }
  135.  
  136. the unitization of intV is: [ , 0.8, 0.6 ]
  137.  
  138. -----------------------------------------------------------
  139.  
  140. there is a ivec3: intV{,-,}, there is a fvec3: fV{1.1f,2.3f,3.8f}, and the result of ivec3·fvec3 as follows:
  141.  
  142. the dotval is: 7.9
  143.  
  144. crossVec is: [ -14.5, -0.5, 4.5 ]

test result

  1. #define LOWPRECISION //开启低精度
  2. #define VEC3_OUT //开启vec3输出
  3.  
  4. #include <lvgm\lvgm.h>
  5. #define stds std::
  6. #define enter stds endl << stds endl
  7.  
  8. using lvgm::ivec2;
  9. using lvgm::ivec3;
  10. using lvgm::fvec3;
  11. using lvgm::fvec2;
  12.  
  13. int main()
  14. {
  15. ivec3 intV{ ,-, }, intV2{ , }, null;
  16. //null.self_unitization();
  17. ivec3 b;
  18. ivec2 _2ivec{ , };
  19. fvec3 fV{ .f,2.1f, };
  20. stds cout << "△--****************** CONSTRUCTOR TEST ******************" << enter;
  21. stds cout << " ******* ivec3 test *********" << stds endl;
  22. stds cout << "there are two ivec3s as intV{ 1,-2,3 } and intV2{ 1, }, the value of which as follows" << enter;
  23. stds cout << intV << enter;
  24. stds cout << intV2 << enter;
  25. stds cout << "there is a ivec2 : _2ivec{1,2}, and a integer 7 to construct a ivec3 as follows" << enter;
  26. ivec3 _2to3{ _2ivec, };
  27. stds cout << "the vec2 in front of the integer of 7: " << _2to3 << enter;
  28. _2to3 = ivec3{ , _2ivec };
  29. stds cout << "the number of 7 in front of vec2: " << _2to3 << enter << enter;
  30.  
  31. stds cout << " ******* fvec3 test **********" << enter;
  32. stds cout << "there is a fvec3 as fV{ 1.f,2.1f, }, the value of which as follows" << enter;
  33. stds cout << fV << enter;
  34. stds cout << "there is a fvec2 : t{1.2f,}, and a value 3 to construct a ivec3 as follows" << enter;
  35. fvec2 t{ 1.2f };
  36. fvec3 f2to3{ t, };
  37. stds cout << "f2to3 : " << f2to3 << enter;
  38.  
  39. stds cout << "△--******************* FUNCTIONS TEST ********************" << enter;
  40. stds cout << "there is a ivec3{1, -2, 3}" << stds endl;
  41. stds cout << "the operator + or - of ivec3 as follows:" << enter;
  42. intV = +intV;
  43. stds cout << "+ : " << intV << stds endl;
  44. intV = -intV;
  45. stds cout << "- :" << intV << enter;
  46. intV = -intV;
  47. stds cout << "-----------------------------------------------------------" << enter;
  48.  
  49. stds cout << "there is a ivec3{1, -2, 3}" << enter;
  50. auto re = ++intV;
  51. stds cout << "++ivec3: the val of expression:" << re << "\tthe val of ivec3:" << intV << enter;
  52. --intV;
  53. re = intV++;
  54. stds cout << "ivec3++: the val of expression:" << re << "\tthe val of ivec3:" << intV << enter;
  55. stds cout << "the operator of -- is the same as above" << enter;
  56. stds cout << "-----------------------------------------------------------" << enter;
  57.  
  58. stds cout << "the operator[] of ivec3 as follows:" << enter;
  59. stds cout << "the intV[2] is " << intV[] << stds endl;
  60. //stds cout << "the intV[4] is " << intV[4] << stds endl;
  61. stds cout << "-----------------------------------------------------------" << enter;
  62.  
  63. stds cout << "there are two ivec3s as intV{ 1,-2,3 } and intV2{ 1, }, the value of which as follows" << enter;
  64. if (intV != intV2)stds cout << "intV is not equ to intV2" << enter;
  65. stds cout << "the operator = such that: intV2 = intV; the result as follows:" << stds endl;
  66. intV2 = intV;
  67. stds cout << "intV2 is " << intV2 << stds endl;
  68. if (intV2 == intV)stds cout << "intV is equ to intV2" << enter;
  69. stds cout << stds endl << "there are two ivec3s as intV{ 1,-2,3 } and intV2{ 1, }, the value of which as follows" << enter;
  70. stds cout << "the operator += such that: intV += intV2, the result of which as follows:" << enter;
  71. intV2 = { , };
  72. intV += intV2;
  73. stds cout << "intV is: " << intV << enter;
  74. stds cout << "the operator -= such that: intV -= intV2, the result of which as follows:" << enter;
  75. intV -= intV2;
  76. stds cout << "intV is: " << intV << enter;
  77. stds cout << "the value of intV is to become the original value" << enter;
  78. stds cout << stds endl << "there are two ivec3s as intV{ 1,-2,3 } and intV2{ 2,1,3 }, the value of which as follows" << enter;
  79. stds cout << "the operator *= such that: intV *= intV2, the result of which as follows:" << enter;
  80. intV2 = { ,, };
  81. intV *= intV2;
  82. stds cout << "intV is: " << intV << enter;
  83. intV /= intV2;
  84. stds cout << "the operator /= such that: intV /= intV2, the result of which as follows:" << enter;
  85. stds cout << "intV is: " << intV << enter;
  86. stds cout << "the value of intV is to become the original value" << enter;
  87.  
  88. stds cout << "-----------------------------------------------------------" << enter;
  89.  
  90. stds cout << "the operator *= (number)such that: intV *= 5, the result of which as follows:" << enter;
  91. intV *= ;
  92. stds cout << "intV is: " << intV << enter;
  93. stds cout << "the operator /= (number) such that: intV /= 5, the result of which as follows:" << enter;
  94. intV /= ;
  95. stds cout << "intV is: " << intV << enter;
  96. stds cout << "the value of intV is to become the original value" << enter;
  97. stds cout << "the operator + 、 -、 * 、/ (ivec3 or number) is the same as above" << enter;
  98. stds cout << "-----------------------------------------------------------" << enter;
  99.  
  100. stds cout << "the operator* between ivec3 and fvec3 as follows:" << enter;
  101. stds cout << "there is a ivec3: intV{1,-2,3}, there is a fvec3: fV{1.1f,2.3f,3.8f}, and the result of ivec3*fvec3 as follows:" << enter;
  102. intV = { ,-, };
  103. fV = { 1.1f,2.3f,3.8f };
  104. auto res = intV*fV;
  105. stds cout << "res is: " << res << enter;
  106. stds cout << "the result of * is up to the higher precision of both" << enter;
  107.  
  108. stds cout << "the operator* between ivec3 and float as follows:" << enter;
  109. stds cout << "there is a ivec3: intV{1,-2,3}, there is a float: 3.14, and the result of ivec3*3.14 as follows:" << enter;
  110. intV = { ,-, };
  111. auto res2 = intV*3.14;
  112. stds cout << "res2 is: " << res2 << enter;
  113. stds cout << "the type of ivec3 * float is not fvec3 but ivec3, and the factor is just a factor that shouldn't change the vec's precision" << stds endl
  114. << "if you need the result's type to become fvec3,you should use static_cast<fvec3>(intV) * float" << enter;
  115. intV = { ,-, };
  116. auto res3 = (static_cast<fvec3>(intV))*3.14;
  117. stds cout << "res3 is: " << res3 << enter;
  118. stds cout << "the operator/ between different type is the same as above" << enter;
  119. stds cout << "-----------------------------------------------------------" << enter;
  120.  
  121. stds cout << "the normal() test as follows: " << enter;
  122. stds cout << "there is a ivec3: intV{1,-2,3}" << enter;
  123. stds cout << "the Norm of intV is: " << intV.normal() << enter;
  124. stds cout << "there is a fvec3: fV{ 1.1, 2.3, 3.5}" << enter;
  125. stds cout << "the Norm of fV is: " << fV.normal() << enter;
  126. stds cout << "-----------------------------------------------------------" << enter;
  127.  
  128. stds cout << "there is a ivec3: intV{0, 4, 3}" << enter;
  129. intV = { ,, };
  130. lvgm::vec3<lvgm::precision> normal = intV.ret_unitization();
  131. stds cout << "the unitization of intV is: " << normal << enter;
  132. stds cout << "-----------------------------------------------------------" << enter;
  133.  
  134. stds cout << "there is a ivec3: intV{1,-2,3}, there is a fvec3: fV{1.1f,2.3f,3.8f}, and the result of ivec3·fvec3 as follows:" << enter;
  135. intV = { ,-, };
  136. fV = { 1.1f,2.3f,3.8f };
  137. lvgm::precision dotval = lvgm::dot(intV, fV);
  138. stds cout << "the dotval is: " << dotval << enter;
  139. auto crossVec = cross(intV, fV);
  140. stds cout << "crossVec is: " << crossVec << enter;
  141. }

test code

库文件代码

  1. /// lvgm.h
  2.  
  3. // -----------------------------------------------------
  4. // [author] lv
  5. // [ time ] 2018.12 ~ 2018.12
  6. // [brief ] include all of the mymath's head files
  7. // -----------------------------------------------------
  8.  
  9. #ifndef LVGM_H
  10. #define LVGM_H
  11.  
  12. #include <lvgm\type_vec\type_vec.h>
  13.  
  14. #endif //LVGM_H

lvgm.h

  1. /// precision.h
  2.  
  3. // -----------------------------------------------------
  4. // [author] lv
  5. // [ time ] 2018.12 ~ 2018.12
  6. // [brief ] control the precision of data
  7. // -----------------------------------------------------
  8.  
  9. #ifndef LV_PRECISION_H
  10. #define LV_PRECISION_H
  11.  
  12. namespace lvgm
  13. {
  14.  
  15. # ifdef HIGHPRECISION //set the high precision
  16. using precision = long double;
  17.  
  18. # elif(defined LOWPRECISION) //set the low preciion
  19. using precision = float;
  20.  
  21. # else
  22. using precision = double; //default precision
  23.  
  24. # endif //set precision
  25.  
  26. } //namespace lvgm
  27.  
  28. #endif //LV_PRECISION_H

precision.h

  1. /// myVec2.h
  2.  
  3. // -----------------------------------------------------
  4. // [author] lv
  5. // [ time ] 2018.12 ~ 2018.12
  6. // [brief ] the definition of two-dimensional vector
  7. // -----------------------------------------------------
  8.  
  9. #ifndef LV_VEC2_H
  10. #define LV_VEC2_H
  11.  
  12. namespace lvgm
  13. {
  14.  
  15. template<typename T>
  16. class vec2
  17. {
  18. public:
  19. using value_type = T;
  20.  
  21. using norm_t = precision;
  22.  
  23. public:
  24.  
  25. template<typename E>
  26. vec2(const vec2<E>& vec); //static_cast
  27.  
  28. vec2(const T x = T(), const T y = T())noexcept;
  29.  
  30. vec2(const vec2&);
  31.  
  32. ~vec2() { }
  33.  
  34. public:
  35. //inline get function
  36. inline T& x() { return _x; }
  37.  
  38. inline T& y() { return _y; }
  39.  
  40. inline T& u() { return _x; }
  41.  
  42. inline T& v() { return _y; }
  43.  
  44. inline T& r() { return _x; }
  45.  
  46. inline T& g() { return _y; }
  47.  
  48. inline T& s() { return _x; }
  49.  
  50. inline T& t() { return _y; }
  51.  
  52. inline vec2 xy() { return vec2<T>{_x, _y}; }
  53.  
  54. inline vec2 yx() { return vec2<T>{_y, _x}; }
  55.  
  56. inline vec2 rg() { return vec2<T>{_x, _y}; }
  57.  
  58. inline vec2 gr() { return vec2<T>{_y, _x}; }
  59.  
  60. inline vec2 uv() { return vec2<T>{_x, _y}; }
  61.  
  62. inline vec2 vu() { return vec2<T>{_y, _x}; }
  63.  
  64. inline vec2 st() { return vec2<T>{_x, _y}; }
  65.  
  66. inline vec2 ts() { return vec2<T>{_y, _x}; }
  67.  
  68. inline const T& x()const { return _x; }
  69.  
  70. inline const T& y()const { return _y; }
  71.  
  72. inline const T& u()const { return _x; }
  73.  
  74. inline const T& v()const { return _y; }
  75.  
  76. inline const T& r()const { return _x; }
  77.  
  78. inline const T& g()const { return _y; }
  79.  
  80. inline const T& s()const { return _x; }
  81.  
  82. inline const T& t()const { return _y; }
  83.  
  84. //inline operator function
  85. inline const vec2& operator+()const;
  86.  
  87. inline vec2 operator-()const;
  88.  
  89. inline vec2& operator++();
  90.  
  91. inline vec2& operator--();
  92.  
  93. inline const vec2 operator++(int);
  94.  
  95. inline const vec2 operator--(int);
  96.  
  97. inline const T& operator[](const int index)const;
  98.  
  99. inline T& operator[](const int index);
  100.  
  101. inline vec2& operator=(const vec2& rhs);
  102.  
  103. inline vec2& operator+=(const vec2& rhs);
  104.  
  105. inline vec2& operator-=(const vec2& rhs);
  106.  
  107. inline vec2& operator*=(const vec2& rhs);
  108.  
  109. inline vec2& operator/=(const vec2& rhs);
  110.  
  111. inline vec2& operator*=(const T factor);
  112.  
  113. inline vec2& operator/=(const T factor);
  114.  
  115. public:
  116. //return the Norm of vec2
  117. inline norm_t normal()const;
  118.  
  119. inline norm_t squar()const;
  120.  
  121. //let self become to the unit vector of vec_type
  122. inline void self_unitization();
  123.  
  124. //return a non-integer three-dimensional unit vector [the type is norm_t]
  125. inline vec2<precision> ret_unitization()const;
  126.  
  127. inline bool isnull()const;
  128.  
  129. private:
  130. T _x, _y;
  131.  
  132. };
  133.  
  134. //constructor functions
  135.  
  136. template<typename T>
  137. vec2<T>::vec2(const T x, const T y)noexcept
  138. :_x(x)
  139. , _y(y)
  140. { }
  141.  
  142. template<typename T>
  143. template<typename E>
  144. vec2<T>::vec2(const vec2<E>& rhs)
  145. :_x(static_cast<T>(rhs.x()))
  146. , _y(static_cast<T>(rhs.y()))
  147. { }
  148.  
  149. template<typename T>
  150. vec2<T>::vec2(const vec2<T>& rhs)
  151. : _x(rhs._x)
  152. , _y(rhs._y)
  153. { }
  154.  
  155. // Binary operator functions [non-mem]
  156.  
  157. template<typename T>
  158. inline vec2<T> operator+(const vec2<T>& v1, const vec2<T>& v2)
  159. {
  160. return vec2<T>(v1[] + v2[], v1[] + v2[]);
  161. }
  162.  
  163. template<typename T>
  164. inline vec2<T> operator-(const vec2<T>& v1, const vec2<T>& v2)
  165. {
  166. //the operator of - ,example (5,4) - (2,2) -> (3,2)
  167. return v1 + (-v2);
  168. }
  169.  
  170. template<typename A, typename B>
  171. inline auto operator*(const vec2<A>& v1, const vec2<B>& v2)
  172. {
  173. //the operator of * ,example (1.1, 2.1) * (2, 3) -> (2.2, 6.3)
  174. using type = decltype(v1[] * v2[]);
  175. return vec2<type>((type)v1[] * v2[], (type)v1[] * v2[]);
  176. }
  177.  
  178. template<typename T>
  179. inline vec2<T> operator*(const vec2<T>& v1, const vec2<T>& v2)
  180. {
  181. //the operator of * ,example (1,2) * (2,3) -> (2,6)
  182. return vec2<T>(v1[] * v2[], v1[] * v2[]);
  183. }
  184.  
  185. template<typename T, typename E>
  186. inline vec2<T> operator*(const vec2<T>& v, const E factor)
  187. {
  188. return vec2<T>(v.x() * factor, v.y() * factor);
  189. }
  190.  
  191. template<typename T, typename E>
  192. inline vec2<T> operator*(const E factor, const vec2<T>& v)
  193. {
  194. return vec2<T>(v.x() * factor, v.y() * factor);
  195. }
  196.  
  197. template<typename A, typename B>
  198. inline auto operator/(const vec2<A>& v1, const vec2<B>& v2)
  199. {
  200. //the operator of / ,example (1.1, 2.1) * (2, 3) -> (0.55, 0.7)
  201. assert(v2.isnull());
  202. using type = decltype(v1[] / v2[]);
  203. return vec2<type>((type)v1[] / v2[], (type)v1[] / v2[]);
  204. }
  205.  
  206. template<typename T>
  207. inline vec2<T> operator/(const vec2<T>& v1, const vec2<T>& v2)
  208. {
  209. //the operator of / ,example 3 * 5 -> 15 , (1,2) * (2,3) -> (1/2,2/3)
  210. assert(v2.isnull());
  211. return operator/<T, T> (v1, v2);
  212. }
  213.  
  214. template<typename T, typename E>
  215. inline vec2<T> operator/(const vec2<T>& v, const E factor)
  216. {
  217. assert(factor != && factor != .);
  218. return vec2<T>(v.x() / factor, v.y() / factor);
  219. }
  220.  
  221. template<typename T>
  222. inline bool operator==(const vec2<T>& v1, const vec2<T>& v2)
  223. {
  224. return v1.x() == v2.x() && v1.y() == v2.y();
  225. }
  226.  
  227. template<typename T>
  228. inline bool operator!=(const vec2<T>& v1, const vec2<T>& v2)
  229. {
  230. return !(v1 == v2);
  231. }
  232.  
  233. // Unary operator functions [mem]
  234.  
  235. template<typename T>
  236. inline const vec2<T>& vec2<T>::operator+() const
  237. {
  238. //the operator of + ,example 5 -> +5, +(1,-2) -> (1,-2)
  239. return *this;
  240. }
  241.  
  242. template<typename T>
  243. inline vec2<T> vec2<T>::operator-() const
  244. {
  245. //the operator of - ,example 5 -> -5, -(1,-2) -> (-1,2)
  246. return vec2<T>(-_x, -_y);
  247. }
  248.  
  249. template<typename T>
  250. inline vec2<T>& vec2<T>::operator++()
  251. {
  252. ++this->_x;
  253. ++this->_y;
  254. return *this;
  255. }
  256.  
  257. template<typename T>
  258. inline const vec2<T> vec2<T>::operator++(int)
  259. {
  260. vec2<T>ori(*this);
  261. ++*this;
  262. return ori;
  263. }
  264.  
  265. template<typename T>
  266. inline vec2<T>& vec2<T>::operator--()
  267. {
  268. --this->_x;
  269. --this->_y;
  270. return *this;
  271. }
  272.  
  273. template<typename T>
  274. inline const vec2<T> vec2<T>::operator--(int)
  275. {
  276. vec2<T>ori(*this);
  277. --*this;
  278. return ori;
  279. }
  280.  
  281. template<typename T>
  282. inline const T& vec2<T>::operator[](const int index)const
  283. {
  284. if (index == )return _x;
  285. else if (index == )return _y;
  286. else throw "the index is error";
  287. }
  288.  
  289. template<typename T>
  290. inline T& vec2<T>::operator[](const int index)
  291. {
  292. if (index == )return _x;
  293. else if (index == )return _y;
  294. else throw "the index is error";
  295. }
  296.  
  297. // member functions
  298.  
  299. template<typename T>
  300. inline vec2<T>& vec2<T>::operator=(const vec2<T>& rhs)
  301. {
  302. if (this != &rhs)
  303. {
  304. _x = rhs._x;
  305. _y = rhs._y;
  306. }
  307. return *this;
  308. }
  309.  
  310. template<typename T>
  311. inline vec2<T>& vec2<T>::operator+=(const vec2& rhs)
  312. {
  313. this->_x += rhs._x;
  314. this->_y += rhs._y;
  315. return *this;
  316. }
  317.  
  318. template<typename T>
  319. inline vec2<T>& vec2<T>::operator-=(const vec2& rhs)
  320. {
  321. return *this += (-rhs);
  322. }
  323.  
  324. template<typename T>
  325. inline vec2<T>& vec2<T>::operator/=(const vec2<T>& rhs)
  326. {
  327. assert(!rhs.isnull());
  328. this->_x /= rhs._x;
  329. this->_y /= rhs._y;
  330. return *this;
  331. }
  332.  
  333. template<typename T>
  334. inline vec2<T>& vec2<T>::operator*=(const vec2<T>& rhs)
  335. {
  336. this->_x *= rhs._x;
  337. this->_y *= rhs._y;
  338. return *this;
  339. }
  340.  
  341. template<typename T>
  342. inline vec2<T>& vec2<T>::operator*=(const T factor)
  343. {
  344. this->_x *= factor;
  345. this->_y *= factor;
  346. return *this;
  347. }
  348.  
  349. template<typename T>
  350. inline vec2<T>& vec2<T>::operator/=(const T factor)
  351. {
  352. assert(factor != );
  353. this->_x /= factor;
  354. this->_y /= factor;
  355. return *this;
  356. }
  357.  
  358. template<typename T>
  359. inline typename vec2<T>::norm_t vec2<T>::normal()const
  360. {
  361. return sqrt(squar());
  362. }
  363.  
  364. template<typename T>
  365. inline typename vec2<T>::norm_t vec2<T>::squar()const
  366. {
  367. return _x*_x + _y*_y;
  368. }
  369.  
  370. template<typename T>
  371. inline void vec2<T>::self_unitization()
  372. {
  373. *this /= normal();
  374. }
  375.  
  376. template<typename T>
  377. inline vec2<precision> vec2<T>::ret_unitization()const
  378. {
  379. norm_t div = normal();
  380. return vec2<norm_t>{ (norm_t)this->_x / div, (norm_t)this->_y / div, (norm_t)this->_z / div };
  381. }
  382.  
  383. template<typename T, typename E>
  384. inline auto dot(const vec2<T>& v1, const vec2<E>& v2) //-> decltype(v1.x() * v2.x() + v1.y() * v2.y()
  385. {// x1 * x2 + y1 * y2
  386. return v1.x() * v2.x() + v1.y() * v2.y();
  387. }
  388.  
  389. template<typename T, typename E>
  390. inline auto cross(const vec2<T> v1, const vec2<E>& v2)
  391. {// v1 × v2
  392. return v1[] * v2[] - v1[] * v2[];
  393. }
  394.  
  395. template<typename T>
  396. inline bool vec2<T>::isnull()const
  397. {
  398. return *this == vec2<T>();
  399. }
  400.  
  401. } //namespace lvgm
  402.  
  403. #endif //LV_VEC2_H

lv_vec2.h

  1. /// myVec3.h
  2.  
  3. // -----------------------------------------------------
  4. // [author] lv
  5. // [ time ] 2018.12 ~ 2018.12
  6. // [brief ] the definition of Three-dimensional vector
  7. // -----------------------------------------------------
  8.  
  9. #ifndef LV_VEC3_H
  10. #define LV_VEC3_H
  11.  
  12. namespace lvgm
  13. {
  14.  
  15. template<typename T>
  16. class vec3
  17. {
  18. public:
  19. using value_type = T;
  20.  
  21. using norm_t = precision;
  22.  
  23. public:
  24.  
  25. template<typename E>
  26. vec3(const vec3<E>& vec); //static_cast
  27.  
  28. vec3(const T e1 = T(), const T e2 = T(), const T e3 = T())noexcept;
  29.  
  30. explicit vec3(const vec2<T>& v2, const T e3 = T())noexcept;
  31.  
  32. explicit vec3(const T e1, const vec2<T>& v)noexcept;
  33.  
  34. explicit vec3(const vec3&);
  35.  
  36. ~vec3() { }
  37.  
  38. public:
  39.  
  40. inline T& x() { return _x; }
  41.  
  42. inline T& y() { return _y; }
  43.  
  44. inline T& z() { return _z; }
  45.  
  46. inline T& r() { return _x; }
  47.  
  48. inline T& g() { return _y; }
  49.  
  50. inline T& b() { return _z; }
  51.  
  52. inline vec2<T> xy() { return vec2<T>{_x, _y}; }
  53.  
  54. inline vec2<T> yx() { return vec2<T>{_y, _x}; }
  55.  
  56. inline vec2<T> xz() { return vec2<T>{_x, _z}; }
  57.  
  58. inline vec2<T> zx() { return vec2<T>{_z, _x}; }
  59.  
  60. inline vec2<T> yz() { return vec2<T>{_y, _z}; }
  61.  
  62. inline vec2<T> zy() { return vec2<T>{_z, _y}; }
  63.  
  64. inline vec2<T> rg() { return vec2<T>{_x, _y}; }
  65.  
  66. inline vec2<T> gr() { return vec2<T>{_y, _x}; }
  67.  
  68. inline vec2<T> rb() { return vec2<T>{_x, _z}; }
  69.  
  70. inline vec2<T> br() { return vec2<T>{_z, _x}; }
  71.  
  72. inline vec2<T> gb() { return vec2<T>{_y, _z}; }
  73.  
  74. inline vec2<T> bg() { return vec2<T>{_z, _y}; }
  75.  
  76. inline vec3 rgb() { return vec3{_x, _y, _z}; }
  77.  
  78. inline vec3 rbg() { return vec3{_x, _z, _y}; }
  79.  
  80. inline vec3 gbr() { return vec3{_y, _z, _x}; }
  81.  
  82. inline vec3 grb() { return vec3{_y, _x, _z}; }
  83.  
  84. inline vec3 bgr() { return vec3{_z, _y, _x}; }
  85.  
  86. inline vec3 brg() { return vec3{_z, _x, _y}; }
  87.  
  88. inline const T& x()const { return _x; }
  89.  
  90. inline const T& y()const { return _y; }
  91.  
  92. inline const T& z()const { return _z; }
  93.  
  94. inline const T& r()const { return _x; }
  95.  
  96. inline const T& g()const { return _y; }
  97.  
  98. inline const T& b()const { return _z; }
  99.  
  100. //inline oprator function
  101. inline const vec3& operator+() const;
  102.  
  103. inline vec3 operator-()const;
  104.  
  105. inline vec3& operator++();
  106.  
  107. inline vec3& operator--();
  108.  
  109. inline const vec3 operator++(int);
  110.  
  111. inline const vec3 operator--(int);
  112.  
  113. inline const T& operator[](const int index)const;
  114.  
  115. inline T& operator[](const int index);
  116.  
  117. inline vec3& operator=(const vec3& rhs);
  118.  
  119. inline vec3& operator+=(const vec3& rhs);
  120.  
  121. inline vec3& operator-=(const vec3& rhs);
  122.  
  123. inline vec3& operator*=(const vec3& rhs);
  124.  
  125. inline vec3& operator/=(const vec3& rhs);
  126.  
  127. inline vec3& operator*=(const T factor);
  128.  
  129. inline vec3& operator/=(const T factor);
  130.  
  131. public:
  132. //return the Norm of vec3
  133. inline norm_t normal()const;
  134.  
  135. inline norm_t squar()const;
  136.  
  137. //let self become to the unit vector of vec_type
  138. inline void self_unitization();
  139.  
  140. //return a non-integer three-dimensional unit vector [the type is norm_t]
  141. inline vec3<precision> ret_unitization()const;
  142.  
  143. inline bool isnull()const;
  144.  
  145. private:
  146. T _x, _y, _z;
  147.  
  148. };
  149.  
  150. //constructor functions
  151.  
  152. template<typename T>
  153. template<typename E>
  154. vec3<T>::vec3(const vec3<E>& vec)
  155. :_x(static_cast<T>(vec.x()))
  156. ,_y(static_cast<T>(vec.y()))
  157. ,_z(static_cast<T>(vec.z()))
  158. { }
  159.  
  160. template<typename T>
  161. vec3<T>::vec3(const T e1, const T e2, const T e3)noexcept
  162. :_x{e1}
  163. ,_y{e2}
  164. ,_z{e3}
  165. { }
  166.  
  167. template<typename T>
  168. vec3<T>::vec3(const vec2<T>& v, const T e3)noexcept
  169. :_x(v.x())
  170. ,_y(v.y())
  171. ,_z(e3)
  172. { }
  173.  
  174. template<typename T>
  175. vec3<T>::vec3(const T e, const vec2<T>& v)noexcept
  176. :_x(e)
  177. ,_y(v.x())
  178. ,_z(v.y())
  179. { }
  180.  
  181. template<typename T>
  182. vec3<T>::vec3(const vec3<T>& rhs)
  183. :_x{rhs._x}
  184. ,_y{rhs._y}
  185. ,_z{rhs._z}
  186. { }
  187.  
  188. // Binary operator functions [non-mem]
  189. template<typename T>
  190. vec3<T> operator+(const vec3<T>& v1, const vec3<T>& v2)
  191. {
  192. //the operator of + ,example (5,4,3) + (2,-2,1) -> (7,2,4)
  193. return vec3<T>(v1[] + v2[], v1[] + v2[], v1[] + v2[]);
  194. }
  195.  
  196. template<typename T>
  197. inline vec3<T> operator-(const vec3<T>& v1, const vec3<T>& v2)
  198. {
  199. //the operator of - ,example (5,4,3) - (2,2,1) -> (3,2,2)
  200. return v1 + (-v2);
  201. }
  202.  
  203. template<typename A, typename B>
  204. inline auto operator*(const vec3<A>& v1, const vec3<B>& v2)
  205. {
  206. //the operator of * ,example (1.1, 2.1, 3.1) * (2, 3, 4) -> (2.2, 6.3, 12.4)
  207. using type = decltype(v1[] * v2[]);
  208. return vec3<type>((type)v1[] * v2[], (type)v1[] * v2[], (type)v1[] * v2[]);
  209. }
  210.  
  211. template<typename T>
  212. inline vec3<T> operator*(const vec3<T>& v1, const vec3<T>& v2)
  213. {
  214. //the operator of * ,example 3 * 5 -> 15 , (1,2,3) * (2,3,4) -> (2,6,12)
  215. return vec3<T>(v1[] * v2[], v1[] * v2[], v1[] * v2[]);
  216. }
  217.  
  218. template<typename T, typename E>
  219. inline vec3<T> operator*(const vec3<T>& v, const E factor)
  220. {
  221. return vec3<T>(v.x() * factor, v.y() * factor, v.z() * factor);
  222. }
  223.  
  224. template<typename T, typename E>
  225. inline vec3<T> operator*(const E factor, const vec3<T>& v)
  226. {
  227. return vec3<T>(v.x() * factor, v.y() * factor, v.z() * factor);
  228. }
  229.  
  230. template<typename A, typename B>
  231. inline auto operator/(const vec3<A>& v1, const vec3<B>& v2)
  232. {
  233. //the operator of / ,example (1.1, 2.1, 3.2) * (2, 3, 4) -> (0.55, 0.7, 0.8)
  234. assert(v2.isnull());
  235. using type = decltype(v1[] / v2[]);
  236. return vec3<type>((type)v1[] / v2[], (type)v1[] / v2[], (type)v1[] / v2[]);
  237. }
  238.  
  239. template<typename T>
  240. inline vec3<T> operator/(const vec3<T>& v1, const vec3<T>& v2)
  241. {
  242. //the operator of / ,example 3 * 5 -> 15 , (1,2,3) * (2,3,4) -> (1/2,2/3,3/4)
  243. assert(v2.isnull());
  244. return operator/<T, T> (v1, v2);
  245. }
  246.  
  247. template<typename T, typename E>
  248. inline vec3<T> operator/(const vec3<T>& v, const E factor)
  249. {
  250. assert(factor != && factor != .);
  251. return vec3<T>(v.x() / factor, v.y() / factor, v.z() / factor);
  252. }
  253.  
  254. template<typename T>
  255. inline bool operator==(const vec3<T>& v1, const vec3<T>& v2)
  256. {
  257. return v1.x() == v2.x() && v1.y() == v2.y() && v1.z() == v2.z();
  258. }
  259.  
  260. template<typename T>
  261. inline bool operator!=(const vec3<T>& v1, vec3<T>& v2)
  262. {
  263. return !(v1 == v2);
  264. }
  265.  
  266. // Unary operator functions [mem]
  267. template<typename T>
  268. inline const vec3<T>& vec3<T>::operator+() const
  269. {
  270. //the operator of + ,example 5 -> +5, +(1,-2,3) -> (1,-2,3)
  271. return *this;
  272. }
  273.  
  274. template<typename T>
  275. inline vec3<T> vec3<T>::operator-() const
  276. {
  277. //the operator of - ,example 5 -> -5, -(1,-2,3) -> (-1,2,-3)
  278. return vec3<T>(-_x, -_y, -_z);
  279. }
  280.  
  281. template<typename T>
  282. inline vec3<T>& vec3<T>::operator++()
  283. {
  284. ++this->_x;
  285. ++this->_y;
  286. ++this->_z;
  287. return *this;
  288. }
  289.  
  290. template<typename T>
  291. inline const vec3<T> vec3<T>::operator++(int)
  292. {
  293. vec3<T>ori(*this);
  294. ++*this;
  295. return ori;
  296. }
  297.  
  298. template<typename T>
  299. inline vec3<T>& vec3<T>::operator--()
  300. {
  301. --this->_x;
  302. --this->_y;
  303. --this->_z;
  304. return *this;
  305. }
  306.  
  307. template<typename T>
  308. inline const vec3<T> vec3<T>::operator--(int)
  309. {
  310. vec3<T>ori(*this);
  311. --*this;
  312. return ori;
  313. }
  314.  
  315. template<typename T>
  316. inline const T& vec3<T>::operator[](const int index)const
  317. {
  318. if (index == )return _x;
  319. else if (index == )return _y;
  320. else if (index == )return _z;
  321. else throw "the index is error";
  322. }
  323.  
  324. template<typename T>
  325. inline T& vec3<T>::operator[](const int index)
  326. {
  327. if (index == )return _x;
  328. else if (index == )return _y;
  329. else if (index == )return _z;
  330. else throw "the index is error";
  331. }
  332.  
  333. // member functions
  334. template<typename T>
  335. inline vec3<T>& vec3<T>::operator=(const vec3<T>& rhs)
  336. {
  337. if (this != &rhs)
  338. {
  339. _x = rhs._x;
  340. _y = rhs._y;
  341. _z = rhs._z;
  342. }
  343. return *this;
  344. }
  345.  
  346. template<typename T>
  347. inline vec3<T>& vec3<T>::operator+=(const vec3& rhs)
  348. {
  349. this->_x += rhs._x;
  350. this->_y += rhs._y;
  351. this->_z += rhs._z;
  352. return *this;
  353. }
  354.  
  355. template<typename T>
  356. inline vec3<T>& vec3<T>::operator-=(const vec3& rhs)
  357. {
  358. this->_x -= rhs._x;
  359. this->_y -= rhs._y;
  360. this->_z -= rhs._z;
  361. return *this;
  362. }
  363.  
  364. template<typename T>
  365. inline vec3<T>& vec3<T>::operator/=(const vec3<T>& rhs)
  366. {
  367. assert(!rhs.isnull());
  368. this->_x /= rhs._x;
  369. this->_y /= rhs._y;
  370. this->_z /= rhs._z;
  371. return *this;
  372. }
  373.  
  374. template<typename T>
  375. inline vec3<T>& vec3<T>::operator*=(const vec3<T>& rhs)
  376. {
  377. this->_x *= rhs._x;
  378. this->_y *= rhs._y;
  379. this->_z *= rhs._z;
  380. return *this;
  381. }
  382.  
  383. template<typename T>
  384. inline vec3<T>& vec3<T>::operator*=(const T factor)
  385. {
  386. this->_x *= factor;
  387. this->_y *= factor;
  388. this->_z *= factor;
  389. return *this;
  390. }
  391.  
  392. template<typename T>
  393. inline vec3<T>& vec3<T>::operator/=(const T factor)
  394. {
  395. assert(factor != );
  396. this->_x /= factor;
  397. this->_y /= factor;
  398. this->_z /= factor;
  399. return *this;
  400. }
  401.  
  402. template<typename T>
  403. inline typename vec3<T>::norm_t vec3<T>::normal()const
  404. {
  405. return sqrt(squar());
  406. }
  407.  
  408. template<typename T>
  409. inline typename vec3<T>::norm_t vec3<T>::squar()const
  410. {
  411. return _x*_x + _y*_y + _z*_z;
  412. }
  413.  
  414. template<typename T>
  415. inline void vec3<T>::self_unitization()
  416. {
  417. *this /= normal();
  418. }
  419.  
  420. template<typename T>
  421. inline vec3<precision> vec3<T>::ret_unitization()const
  422. {
  423. norm_t div = normal();
  424. return vec3<norm_t>{ (norm_t)this->_x / div,(norm_t)this->_y / div,(norm_t)this->_z / div };
  425. }
  426.  
  427. template<typename T, typename E>
  428. inline auto dot(const vec3<T>& v1, const vec3<E>& v2) //-> decltype(v1.x() * v2.x() + v1.y() * v2.y() + v1.z() * v2.z())
  429. {// x1 * x2 + y1 * y2 + z1 * z2
  430. return v1.x() * v2.x() + v1.y() * v2.y() + v1.z() * v2.z();
  431. }
  432.  
  433. template<typename T, typename E>
  434. inline auto cross(const vec3<T> v1, const vec3<E>& v2)
  435. {// v1 × v2
  436. return vec3<decltype(v1[] * v2[] - v1[] * v2[])>
  437. (
  438. v1[] * v2[] - v1[] * v2[],
  439. v1[] * v2[] - v1[] * v2[],
  440. v1[] * v2[] - v1[] * v2[]
  441. );
  442. }
  443.  
  444. template<typename T>
  445. inline bool vec3<T>::isnull()const
  446. {
  447. return *this == vec3<T>();
  448. }
  449.  
  450. } //namespace lvgm
  451.  
  452. #endif //LV_VEC3_H

lv_vec3.h

  1. /// all vectors are in here
  2.  
  3. // -----------------------------------------------------
  4. // [author] lv
  5. // [ time ] 2018.12 ~ 2018.12
  6. // [brief ] all vectors are in here
  7. // -----------------------------------------------------
  8.  
  9. #pragma once
  10.  
  11. #include <iostream>
  12. #include <cmath>
  13. #include <cassert>
  14. #include <lvgm\lv_precision.h>
  15.  
  16. #include "lv_vec2.h"
  17. #include "lv_vec3.h"
  18. #include "vec_inout.h"
  19.  
  20. namespace lvgm
  21. {
  22. template<typename T> class vec2;
  23.  
  24. template<typename T> class vec3;
  25.  
  26. template<typename T> class vec4;
  27.  
  28. typedef vec2<bool> bvec2;
  29.  
  30. typedef vec2<char> cvec2;
  31.  
  32. typedef vec2<short> svec2;
  33.  
  34. typedef vec2<int> ivec2;
  35.  
  36. typedef vec2<float> fvec2;
  37.  
  38. typedef vec2<double> dvec2;
  39.  
  40. typedef vec2<long double> ldvec2;
  41.  
  42. typedef vec3<bool> bvec3;
  43.  
  44. typedef vec3<char> cvec3;
  45.  
  46. typedef vec3<short> svec3;
  47.  
  48. typedef vec3<int> ivec3;
  49.  
  50. typedef vec3<float> fvec3;
  51.  
  52. typedef vec3<double> dvec3;
  53.  
  54. typedef vec3<long double> ldvec3;
  55.  
  56. typedef vec4<bool> bvec4;
  57.  
  58. typedef vec4<char> cvec4;
  59.  
  60. typedef vec4<short> svec4;
  61.  
  62. typedef vec4<int> ivec4;
  63.  
  64. typedef vec4<float> fvec4;
  65.  
  66. typedef vec4<double> dvec4;
  67.  
  68. typedef vec4<long double> ldvec4;
  69. }

type_vec.h

  1. ///vec_inout.h
  2.  
  3. // -----------------------------------------------------
  4. // [author] lv
  5. // [ time ] 2018.12 ~ 2018.12
  6. // [brief ] control the iostream of vec
  7. // -----------------------------------------------------
  8.  
  9. #pragma once
  10.  
  11. # ifdef VEC_OUT
  12.  
  13. template<typename T>
  14. std::ostream& operator<<(std::ostream& cout, const lvgm::vec2<T>& v)
  15. {
  16. cout << "[ " << v.x() << ", " << v.y() << " ]";
  17. return cout;
  18. }
  19.  
  20. template<typename T>
  21. std::ostream& operator<<(std::ostream& cout, const lvgm::vec3<T>& v)
  22. {
  23. cout << "[ " << v.x() << ", " << v.y() << ", " << v.z() << " ]";
  24. return cout;
  25. }
  26.  
  27. template<typename T>
  28. std::ostream& operator<<(std::ostream& cout, const lvgm::vec4<T>& v)
  29. {
  30. cout << "[ " << v.x() << ", " << v.y() << ", " << v.z() << v.w() << " ]";
  31. return cout;
  32. }
  33.  
  34. #endif
  35.  
  36. # ifdef VEC2_OUT
  37.  
  38. template<typename T>
  39. std::ostream& operator<<(std::ostream& cout, const lvgm::vec2<T>& v)
  40. {
  41. cout << "[ " << v.x() << ", " << v.y() << " ]";
  42. return cout;
  43. }
  44.  
  45. #endif
  46.  
  47. # ifdef VEC3_OUT
  48.  
  49. template<typename T>
  50. std::ostream& operator<<(std::ostream& cout, const lvgm::vec3<T>& v)
  51. {
  52. cout << "[ " << v.x() << ", " << v.y() << ", " << v.z() << " ]";
  53. return cout;
  54. }
  55.  
  56. #endif
  57.  
  58. # ifdef VEC4_OUT
  59.  
  60. template<typename T>
  61. std::ostream& operator<<(std::ostream& cout, const lvgm::vec4<T>& v)
  62. {
  63. cout << "[ " << v.x() << ", " << v.y() << ", " << v.z() << v.w() << " ]";
  64. return cout;
  65. }
  66.  
  67. #endif

vec_inout.h

如有什么问题,请于评论区留言或者邮箱(^_^)

感谢您的阅读,生活愉快`

<泛> C++3D数学库设计详解 向量篇的更多相关文章

  1. <泛> C++3D数学库设计详解 简单光学几何 && 随机向量生成

    // 注:本内容为作者原创,禁止在其他网站复述内容以及用于商业盈利,如需引用,请标明出处:http://www.cnblogs.com/lv_anchoret/  Preface 当初写这个库,是为了 ...

  2. Dubbo架构设计详解-转

    Dubbo架构设计详解  2013-09-03 21:26:59    Yanjun Dubbo是Alibaba开源的分布式服务框架,它最大的特点是按照分层的方式来架构,使用这种方式可以使各个层之间解 ...

  3. Java生鲜电商平台-Java后端生成Token架构与设计详解

    Java生鲜电商平台-Java后端生成Token架构与设计详解 目的:Java开源生鲜电商平台-Java后端生成Token目的是为了用于校验客户端,防止重复提交. 技术选型:用开源的JWT架构. 1. ...

  4. Python爬虫之selenium库使用详解

    Python爬虫之selenium库使用详解 本章内容如下: 什么是Selenium selenium基本使用 声明浏览器对象 访问页面 查找元素 多个元素查找 元素交互操作 交互动作 执行JavaS ...

  5. STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解)

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) 前面 ...

  6. [转帖]前端-chromeF12 谷歌开发者工具详解 Console篇

    前端-chromeF12 谷歌开发者工具详解 Console篇 https://blog.csdn.net/qq_39892932/article/details/82655866 趁着搞 cloud ...

  7. bt协议详解 DHT篇(上)

    bt协议详解 DHT篇(上) 最近开发了一个免费教程的网站,突然产生了仔细了解bt协议的想法,这篇文章是bt协议详解系列的第三篇,后续还会写一些关于搜索和索引的东西,都是在开发这个网站的过程中学习到的 ...

  8. [转帖]前端-chromeF12 谷歌开发者工具详解 Network篇

    前端-chromeF12 谷歌开发者工具详解 Network篇 https://blog.csdn.net/qq_39892932/article/details/82493922 blog 也是原作 ...

  9. RocketMQ源码详解 | Broker篇 · 其一:线程模型与接收链路

    概述 在上一节 RocketMQ源码详解 | Producer篇 · 其二:消息组成.发送链路 中,我们终于将消息发送出了 Producer,在短暂的 tcp 握手后,很快它就会进入目的 Broker ...

随机推荐

  1. 线搜索(line search)方法

    在机器学习中, 通常需要求某个函数的最值(比如最大似然中需要求的似然的最大值). 线搜索(line search)是求得一个函数\(f(x)\)的最值的两种常用迭代方法之一(另外一个是trust re ...

  2. window环境下使用sbt编译spark源码

    前些天用maven编译打包spark,搞得焦头烂额的,各种错误,层出不穷,想想也是醉了,于是乎,换种方式,使用sbt编译,看看人品如何! 首先,从官网spark官网下载spark源码包,解压出来.我这 ...

  3. 【leetcode 简单】 第六十四题 翻转二叉树

    翻转一棵二叉树. 示例: 输入: 4 / \ 2 7 / \ / \ 1 3 6 9 输出: 4 / \ 7 2 / \ / \ 9 6 3 1 备注: 这个问题是受到 Max Howell的 原问题 ...

  4. Mysql服务优化

    Mysql服务优化   Mysql服务加速优化的6个阶段 硬件层面优化 操作系统层面优化 Mysql数据库层面优化 网站集群架构层面优化 安全优化 流程.制度控制优化 1.硬件层面优化 CPU     ...

  5. 【译】第二篇 Integration Services:SSIS数据泵

    本篇文章是Integration Services系列的第二篇,详细内容请参考原文. 简介SSIS用于移动数据.数据流任务提供此功能.因为这个原因,当介绍SSIS时我喜欢从数据流任务开始.数据流任务的 ...

  6. es6解构、中括号前加分号

    在写项目的时候,为了方便使用了下对象的解构,无奈又遇到一坑. 为什么会不能解构呢?因为这里的{}会导致歧义,因为 JavaScript 引擎会将{xxxxx}理解成一个代码块,从而发生语法错误.只有不 ...

  7. JavaScript 优雅的实现方式包含你可能不知道的知识点

    有些东西很好用,但是你未必知道:有些东西你可能用过,但是你未必知道原理. 实现一个目的有多种途径,俗话说,条条大路通罗马.很多内容来自平时的一些收集以及过往博客文章底下的精彩评论,收集整理拓展一波,发 ...

  8. linux下的usb抓包方法【转】

    转自:http://blog.chinaunix.net/uid-11848011-id-4508834.html 1.配置内核使能usb monitor: make menuconfig       ...

  9. 【Linux技术】ubuntu常用命令【转】

    转自:http://www.cnblogs.com/lcw/p/3159462.html 查看软件xxx安装内容:dpkg -L xxx查找软件库中的软件:apt-cache search 正则表达式 ...

  10. Mysql_Learning_Notes_mysql系统结构_2

    Mysql_Learning_Notes_mysql系统结构_2 三层体系结构,启动方式,日志类型及解析方法,mysql 升级 连接层 通信协议处理\线程处理\账号认证(用户名和密码认证)\安全检查等 ...