<泛> C++3D数学库设计详解 向量篇
// 注:本内容为作者原创,禁止在其他网站复述内容以及用于商业盈利,如需引用,请标明出处:http://www.cnblogs.com/lv_anchoret/
Preface
为了支持光线追踪的学习,决定写一个3D泛型数学库。
我采用的是windows平台以及C++Template技术
我的库文件组织目录如下
--lvgm
----test
------testVec.cpp
----type_vec
------lv_vec2.h
------lv_vec3.h
------type_vec.h
------vec_inout.h
----lv_precision.h
----lvgm.h
Ready
这一篇,需要您了解C++Template的基本语法
需要您了解向量的运算
该向量库文件解释:
二维向量模板类
三维向量模板类
数据精度设定
本库提供的向量相关的默认输出形式设置文件
该向量库文件暂时没有四元组lv_vec4,我将在之后添加并单独写一篇进行陈述
该向量库能为您提供的功能:
对向量内部数据方便自由地调取和设定
向量的正负
向量的加减乘除
向量的自增自减
向量的索引
向量判等
向量的赋值以及复合运算赋值
向量的范数
向量的范数平方
向量的自身单位化
返回该向量的高精度单位化向量
向量的内积和外积运算(·、×)
向量判空
Design
由于二维和三维的设计相仿,故此处以三维为例进行描述
<1>类型相关
本类中公开定义数据值类型为模板参T,范数精度类型为经外部宏设定的类型——precision, 默认为double
设计问题:一开始我们可能想到在模板类里面利用宏控制数据存储精度,但你可能会遇到问题。例如:
- # ifdef HIGHPRECISION //set the high precision
- using norm_t = long double;
- # elif(defined LOWPRECISION) //set the low preciion
- using norm_t = float;
- # else
- using norm_t = double; //default precision
- # endif //set precision
假设我现在有一个int的三维向量,我想要返回一个实数精度(norm_t)的单位化向量,于是我们写了一个成员函数vec3<norm_t> ret_unit()const,我们在主函数中需要创建一个vec3去接收ret_unit的返回值
那么,我们两手一摊,无可奈何你可能这样做:
- vec3<??> normal = intV.ret_unit();
你可能做不到,??可能是vec3::norm_t 吗,显然不是,vec3是一个模板,只能先将vec3<T>中的T特化。突然觉得,模板类中公开公布了精度类型norm_t,但是却用不上??
解决方案
综合考量到其他类可能也需要精度设定,所以干脆把这设置部分代码单独出来,然后将norm_t 改名为precision,于是问题就解决了
模板类中只需要提前预处理precision文件即可进行如下简单定义:
- using norm_t = precision;
而主函数中也方便多了
- vec3<precision> normal = intV.ret_unit();
<2>参数类型
我看过glm数学库的源码有一类函数是这么实现的
- template <typename T, precision P>
- template <typename U>
- GLM_FUNC_QUALIFIER tvec3<T, P> & tvec3<T, P>::operator+=(tvec3<U, P> const & v)
- {
- this->x += static_cast<T>(v.x);
- this->y += static_cast<T>(v.y);
- this->z += static_cast<T>(v.z);
- return *this;
- }
其实,意思就是它允许+=另外一种类型的向量,然后我都强转到自身类型T之后进行运算
解决方案
个人有一拙见,我是下面这样实现的,如果有什么漏洞请邮件或者评论留言。
我可以通过“重载”static_cast,或者进行一些操作使得vec3模板类能够实现类似内置整型之间的隐式自动类型转换
那么,我就不需要设定多个模板参在内部static_cast了。
好,我们这么做就可以了:
- template<typename E>
- vec3(const vec3<E>& vec); //static_cast
我在定义构造函数的时候支持其他类型的vec3,哪里需要vec3值传递,我就调用它。
<3>对数据进行方便自由的操作
很多数学库貌似可以直接v.x v.y ,很多C-struct设计,但作为C++党,用C++语言写代码,要严格遵守数据隐藏,在不失语言原则的情况下做到最方便。
1)很多库支持 v.x = 3;
于是我定义:
- inline T& x() { return _x; }
但我还是重载了常量版本
- inline const T& x()const { return _x; }
我希望对内部数据的修改的禁止令可以通过参数来实现,比如:
- template<typename T>
- inline vec3<T> operator/(const vec3<T>& v1, const vec3<T>& v2)
- {
- //the operator of / ,example 3 * 5 -> 15 , (1,2,3) * (2,3,4) -> (1/2,2/3,3/4)
- assert(v2.isnull());
- return operator/<T, T> (v1, v2);
- }
所以,我仅仅去重载v.x()的const版本,而不去禁止x()可修改
2)GLSL中还支持这种骚操作:v.rgb = v.gbr; or v.rg = v1.rg
我看了glm库,它暂时没有实现上述的操作支持
而GLSL库我还没研读
所以,凭着自身粗浅的技术,只能实现获取数据元组,而不能实现修改:
- inline vec2<T> xy() { return vec2<T>{_x, _y}; }
<4>运算符设计
按照C++operator普遍的设计原则,依旧是将单目和(复合)赋值运算符重载定义为成员函数,而将双目运算符定义为友元或者外部函数,在本库中采用STL设计原则,定义为命名空间内的类外函数,为了不破坏C++类的封装性
++、--等单目运算符请参见我的另外一篇专门解说运算符重载的文章
此处,我只陈述与vec3类相关的设计细节
关于加减法,从数学角度讲,一个向量加减一个标量是非法的,所以,本库中不支持向量和标量的加减法,对于将每一个元素加同一个值,请用偏移向量进行。
而乘法和除法则支持与标量进行运算,因为一个标量乘以一个向量,只是把向量长度延伸了,在数学上也是合法的。
除此之外,考虑到两个vec3对象进行乘除法,如果this是int其他是另外一个是实数的话,我觉得还是进行精度提升的好,所以有专门的重载,且应用了C++11的自动追踪返回值类型技术
关于%以及%=,从数学角度讲,实数并不支持%运算,只有integer才有,而在图形运算过程中,大多是实数,尽管本库不全应用于图形计算,但是%合法运算在工程项目中占得也并不多,所以,如果需要,请自行将每一个元素进行%,库设计中不会因为极小部分的应用而使库变得臃肿
向量范数以及单位化(标准化)
一个类型设计点:利用用户设定精度类型norm_t定义范数的值类型以及返回的标准化向量模板参。
关于向量单位化,我写了两个,一个是自身单位化,此时遵循本身类型进行,意思就是int进行单位化仍然里面的元素是int。
另一个是返回单位化向量,这个时候是实数向量。
我想陈述的本库相关的设计原则基本完毕。
TEST
测试效果:
- △--****************** CONSTRUCTOR TEST ******************
- ******* ivec3 test *********
- there are two ivec3s as intV{ ,-, } and intV2{ , }, the value of which as follows
- [ , -, ]
- [ , , ]
- there is a ivec2 : _2ivec{,}, and a integer to construct a ivec3 as follows
- the vec2 in front of the integer of : [ , , ]
- the number of in front of vec2: [ , , ]
- ******* fvec3 test **********
- there is a fvec3 as fV{ .f,2.1f, }, the value of which as follows
- [ , 2.1, ]
- there is a fvec2 : t{1.2f,}, and a value to construct a ivec3 as follows
- f2to3 : [ 1.2, , ]
- △--******************* FUNCTIONS TEST ********************
- there is a ivec3{, -, }
- the operator + or - of ivec3 as follows:
- + : [ , -, ]
- - :[ -, , - ]
- -----------------------------------------------------------
- there is a ivec3{, -, }
- ++ivec3: the val of expression:[ , -, ] the val of ivec3:[ , -, ]
- ivec3++: the val of expression:[ , -, ] the val of ivec3:[ , -, ]
- the operator of -- is the same as above
- -----------------------------------------------------------
- the operator[] of ivec3 as follows:
- the intV[] is
- -----------------------------------------------------------
- there are two ivec3s as intV{ ,-, } and intV2{ , }, the value of which as follows
- intV is not equ to intV2
- the operator = such that: intV2 = intV; the result as follows:
- intV2 is [ , -, ]
- intV is equ to intV2
- there are two ivec3s as intV{ ,-, } and intV2{ , }, the value of which as follows
- the operator += such that: intV += intV2, the result of which as follows:
- intV is: [ , -, ]
- the operator -= such that: intV -= intV2, the result of which as follows:
- intV is: [ , -, ]
- the value of intV is to become the original value
- there are two ivec3s as intV{ ,-, } and intV2{ ,, }, the value of which as follows
- the operator *= such that: intV *= intV2, the result of which as follows:
- intV is: [ , -, ]
- the operator /= such that: intV /= intV2, the result of which as follows:
- intV is: [ , -, ]
- the value of intV is to become the original value
- -----------------------------------------------------------
- the operator *= (number)such that: intV *= , the result of which as follows:
- intV is: [ , -, ]
- the operator /= (number) such that: intV /= , the result of which as follows:
- intV is: [ , -, ]
- the value of intV is to become the original value
- the operator + 、 -、 * 、/ (ivec3 or number) is the same as above
- -----------------------------------------------------------
- the operator* between ivec3 and fvec3 as follows:
- there is a ivec3: intV{,-,}, there is a fvec3: fV{1.1f,2.3f,3.8f}, and the result of ivec3*fvec3 as follows:
- res is: [ 1.1, -4.6, 11.4 ]
- the result of * is up to the higher precision of both
- the operator* between ivec3 and float as follows:
- there is a ivec3: intV{,-,}, there is a float: 3.14, and the result of ivec3*3.14 as follows:
- res2 is: [ , -, ]
- the type of ivec3 * float is not fvec3 but ivec3, and the factor is just a factor that shouldn't change the vec's precision
- if you need the result's type to become fvec3,you should use static_cast<fvec3>(intV) * float
- res3 is: [ 3.14, -6.28, 9.42 ]
- the operator/ between different type is the same as above
- -----------------------------------------------------------
- the normal() test as follows:
- there is a ivec3: intV{,-,}
- the Norm of intV is: 3.74166
- there is a fvec3: fV{ 1.1, 2.3, 3.5}
- the Norm of fV is: 4.57602
- -----------------------------------------------------------
- there is a ivec3: intV{, , }
- the unitization of intV is: [ , 0.8, 0.6 ]
- -----------------------------------------------------------
- there is a ivec3: intV{,-,}, there is a fvec3: fV{1.1f,2.3f,3.8f}, and the result of ivec3·fvec3 as follows:
- the dotval is: 7.9
- crossVec is: [ -14.5, -0.5, 4.5 ]
test result
- #define LOWPRECISION //开启低精度
- #define VEC3_OUT //开启vec3输出
- #include <lvgm\lvgm.h>
- #define stds std::
- #define enter stds endl << stds endl
- using lvgm::ivec2;
- using lvgm::ivec3;
- using lvgm::fvec3;
- using lvgm::fvec2;
- int main()
- {
- ivec3 intV{ ,-, }, intV2{ , }, null;
- //null.self_unitization();
- ivec3 b;
- ivec2 _2ivec{ , };
- fvec3 fV{ .f,2.1f, };
- stds cout << "△--****************** CONSTRUCTOR TEST ******************" << enter;
- stds cout << " ******* ivec3 test *********" << stds endl;
- stds cout << "there are two ivec3s as intV{ 1,-2,3 } and intV2{ 1, }, the value of which as follows" << enter;
- stds cout << intV << enter;
- stds cout << intV2 << enter;
- stds cout << "there is a ivec2 : _2ivec{1,2}, and a integer 7 to construct a ivec3 as follows" << enter;
- ivec3 _2to3{ _2ivec, };
- stds cout << "the vec2 in front of the integer of 7: " << _2to3 << enter;
- _2to3 = ivec3{ , _2ivec };
- stds cout << "the number of 7 in front of vec2: " << _2to3 << enter << enter;
- stds cout << " ******* fvec3 test **********" << enter;
- stds cout << "there is a fvec3 as fV{ 1.f,2.1f, }, the value of which as follows" << enter;
- stds cout << fV << enter;
- stds cout << "there is a fvec2 : t{1.2f,}, and a value 3 to construct a ivec3 as follows" << enter;
- fvec2 t{ 1.2f };
- fvec3 f2to3{ t, };
- stds cout << "f2to3 : " << f2to3 << enter;
- stds cout << "△--******************* FUNCTIONS TEST ********************" << enter;
- stds cout << "there is a ivec3{1, -2, 3}" << stds endl;
- stds cout << "the operator + or - of ivec3 as follows:" << enter;
- intV = +intV;
- stds cout << "+ : " << intV << stds endl;
- intV = -intV;
- stds cout << "- :" << intV << enter;
- intV = -intV;
- stds cout << "-----------------------------------------------------------" << enter;
- stds cout << "there is a ivec3{1, -2, 3}" << enter;
- auto re = ++intV;
- stds cout << "++ivec3: the val of expression:" << re << "\tthe val of ivec3:" << intV << enter;
- --intV;
- re = intV++;
- stds cout << "ivec3++: the val of expression:" << re << "\tthe val of ivec3:" << intV << enter;
- stds cout << "the operator of -- is the same as above" << enter;
- stds cout << "-----------------------------------------------------------" << enter;
- stds cout << "the operator[] of ivec3 as follows:" << enter;
- stds cout << "the intV[2] is " << intV[] << stds endl;
- //stds cout << "the intV[4] is " << intV[4] << stds endl;
- stds cout << "-----------------------------------------------------------" << enter;
- stds cout << "there are two ivec3s as intV{ 1,-2,3 } and intV2{ 1, }, the value of which as follows" << enter;
- if (intV != intV2)stds cout << "intV is not equ to intV2" << enter;
- stds cout << "the operator = such that: intV2 = intV; the result as follows:" << stds endl;
- intV2 = intV;
- stds cout << "intV2 is " << intV2 << stds endl;
- if (intV2 == intV)stds cout << "intV is equ to intV2" << enter;
- stds cout << stds endl << "there are two ivec3s as intV{ 1,-2,3 } and intV2{ 1, }, the value of which as follows" << enter;
- stds cout << "the operator += such that: intV += intV2, the result of which as follows:" << enter;
- intV2 = { , };
- intV += intV2;
- stds cout << "intV is: " << intV << enter;
- stds cout << "the operator -= such that: intV -= intV2, the result of which as follows:" << enter;
- intV -= intV2;
- stds cout << "intV is: " << intV << enter;
- stds cout << "the value of intV is to become the original value" << enter;
- stds cout << stds endl << "there are two ivec3s as intV{ 1,-2,3 } and intV2{ 2,1,3 }, the value of which as follows" << enter;
- stds cout << "the operator *= such that: intV *= intV2, the result of which as follows:" << enter;
- intV2 = { ,, };
- intV *= intV2;
- stds cout << "intV is: " << intV << enter;
- intV /= intV2;
- stds cout << "the operator /= such that: intV /= intV2, the result of which as follows:" << enter;
- stds cout << "intV is: " << intV << enter;
- stds cout << "the value of intV is to become the original value" << enter;
- stds cout << "-----------------------------------------------------------" << enter;
- stds cout << "the operator *= (number)such that: intV *= 5, the result of which as follows:" << enter;
- intV *= ;
- stds cout << "intV is: " << intV << enter;
- stds cout << "the operator /= (number) such that: intV /= 5, the result of which as follows:" << enter;
- intV /= ;
- stds cout << "intV is: " << intV << enter;
- stds cout << "the value of intV is to become the original value" << enter;
- stds cout << "the operator + 、 -、 * 、/ (ivec3 or number) is the same as above" << enter;
- stds cout << "-----------------------------------------------------------" << enter;
- stds cout << "the operator* between ivec3 and fvec3 as follows:" << enter;
- stds cout << "there is a ivec3: intV{1,-2,3}, there is a fvec3: fV{1.1f,2.3f,3.8f}, and the result of ivec3*fvec3 as follows:" << enter;
- intV = { ,-, };
- fV = { 1.1f,2.3f,3.8f };
- auto res = intV*fV;
- stds cout << "res is: " << res << enter;
- stds cout << "the result of * is up to the higher precision of both" << enter;
- stds cout << "the operator* between ivec3 and float as follows:" << enter;
- stds cout << "there is a ivec3: intV{1,-2,3}, there is a float: 3.14, and the result of ivec3*3.14 as follows:" << enter;
- intV = { ,-, };
- auto res2 = intV*3.14;
- stds cout << "res2 is: " << res2 << enter;
- stds cout << "the type of ivec3 * float is not fvec3 but ivec3, and the factor is just a factor that shouldn't change the vec's precision" << stds endl
- << "if you need the result's type to become fvec3,you should use static_cast<fvec3>(intV) * float" << enter;
- intV = { ,-, };
- auto res3 = (static_cast<fvec3>(intV))*3.14;
- stds cout << "res3 is: " << res3 << enter;
- stds cout << "the operator/ between different type is the same as above" << enter;
- stds cout << "-----------------------------------------------------------" << enter;
- stds cout << "the normal() test as follows: " << enter;
- stds cout << "there is a ivec3: intV{1,-2,3}" << enter;
- stds cout << "the Norm of intV is: " << intV.normal() << enter;
- stds cout << "there is a fvec3: fV{ 1.1, 2.3, 3.5}" << enter;
- stds cout << "the Norm of fV is: " << fV.normal() << enter;
- stds cout << "-----------------------------------------------------------" << enter;
- stds cout << "there is a ivec3: intV{0, 4, 3}" << enter;
- intV = { ,, };
- lvgm::vec3<lvgm::precision> normal = intV.ret_unitization();
- stds cout << "the unitization of intV is: " << normal << enter;
- stds cout << "-----------------------------------------------------------" << enter;
- stds cout << "there is a ivec3: intV{1,-2,3}, there is a fvec3: fV{1.1f,2.3f,3.8f}, and the result of ivec3·fvec3 as follows:" << enter;
- intV = { ,-, };
- fV = { 1.1f,2.3f,3.8f };
- lvgm::precision dotval = lvgm::dot(intV, fV);
- stds cout << "the dotval is: " << dotval << enter;
- auto crossVec = cross(intV, fV);
- stds cout << "crossVec is: " << crossVec << enter;
- }
test code
库文件代码
- /// lvgm.h
- // -----------------------------------------------------
- // [author] lv
- // [ time ] 2018.12 ~ 2018.12
- // [brief ] include all of the mymath's head files
- // -----------------------------------------------------
- #ifndef LVGM_H
- #define LVGM_H
- #include <lvgm\type_vec\type_vec.h>
- #endif //LVGM_H
lvgm.h
- /// precision.h
- // -----------------------------------------------------
- // [author] lv
- // [ time ] 2018.12 ~ 2018.12
- // [brief ] control the precision of data
- // -----------------------------------------------------
- #ifndef LV_PRECISION_H
- #define LV_PRECISION_H
- namespace lvgm
- {
- # ifdef HIGHPRECISION //set the high precision
- using precision = long double;
- # elif(defined LOWPRECISION) //set the low preciion
- using precision = float;
- # else
- using precision = double; //default precision
- # endif //set precision
- } //namespace lvgm
- #endif //LV_PRECISION_H
precision.h
- /// myVec2.h
- // -----------------------------------------------------
- // [author] lv
- // [ time ] 2018.12 ~ 2018.12
- // [brief ] the definition of two-dimensional vector
- // -----------------------------------------------------
- #ifndef LV_VEC2_H
- #define LV_VEC2_H
- namespace lvgm
- {
- template<typename T>
- class vec2
- {
- public:
- using value_type = T;
- using norm_t = precision;
- public:
- template<typename E>
- vec2(const vec2<E>& vec); //static_cast
- vec2(const T x = T(), const T y = T())noexcept;
- vec2(const vec2&);
- ~vec2() { }
- public:
- //inline get function
- inline T& x() { return _x; }
- inline T& y() { return _y; }
- inline T& u() { return _x; }
- inline T& v() { return _y; }
- inline T& r() { return _x; }
- inline T& g() { return _y; }
- inline T& s() { return _x; }
- inline T& t() { return _y; }
- inline vec2 xy() { return vec2<T>{_x, _y}; }
- inline vec2 yx() { return vec2<T>{_y, _x}; }
- inline vec2 rg() { return vec2<T>{_x, _y}; }
- inline vec2 gr() { return vec2<T>{_y, _x}; }
- inline vec2 uv() { return vec2<T>{_x, _y}; }
- inline vec2 vu() { return vec2<T>{_y, _x}; }
- inline vec2 st() { return vec2<T>{_x, _y}; }
- inline vec2 ts() { return vec2<T>{_y, _x}; }
- inline const T& x()const { return _x; }
- inline const T& y()const { return _y; }
- inline const T& u()const { return _x; }
- inline const T& v()const { return _y; }
- inline const T& r()const { return _x; }
- inline const T& g()const { return _y; }
- inline const T& s()const { return _x; }
- inline const T& t()const { return _y; }
- //inline operator function
- inline const vec2& operator+()const;
- inline vec2 operator-()const;
- inline vec2& operator++();
- inline vec2& operator--();
- inline const vec2 operator++(int);
- inline const vec2 operator--(int);
- inline const T& operator[](const int index)const;
- inline T& operator[](const int index);
- inline vec2& operator=(const vec2& rhs);
- inline vec2& operator+=(const vec2& rhs);
- inline vec2& operator-=(const vec2& rhs);
- inline vec2& operator*=(const vec2& rhs);
- inline vec2& operator/=(const vec2& rhs);
- inline vec2& operator*=(const T factor);
- inline vec2& operator/=(const T factor);
- public:
- //return the Norm of vec2
- inline norm_t normal()const;
- inline norm_t squar()const;
- //let self become to the unit vector of vec_type
- inline void self_unitization();
- //return a non-integer three-dimensional unit vector [the type is norm_t]
- inline vec2<precision> ret_unitization()const;
- inline bool isnull()const;
- private:
- T _x, _y;
- };
- //constructor functions
- template<typename T>
- vec2<T>::vec2(const T x, const T y)noexcept
- :_x(x)
- , _y(y)
- { }
- template<typename T>
- template<typename E>
- vec2<T>::vec2(const vec2<E>& rhs)
- :_x(static_cast<T>(rhs.x()))
- , _y(static_cast<T>(rhs.y()))
- { }
- template<typename T>
- vec2<T>::vec2(const vec2<T>& rhs)
- : _x(rhs._x)
- , _y(rhs._y)
- { }
- // Binary operator functions [non-mem]
- template<typename T>
- inline vec2<T> operator+(const vec2<T>& v1, const vec2<T>& v2)
- {
- return vec2<T>(v1[] + v2[], v1[] + v2[]);
- }
- template<typename T>
- inline vec2<T> operator-(const vec2<T>& v1, const vec2<T>& v2)
- {
- //the operator of - ,example (5,4) - (2,2) -> (3,2)
- return v1 + (-v2);
- }
- template<typename A, typename B>
- inline auto operator*(const vec2<A>& v1, const vec2<B>& v2)
- {
- //the operator of * ,example (1.1, 2.1) * (2, 3) -> (2.2, 6.3)
- using type = decltype(v1[] * v2[]);
- return vec2<type>((type)v1[] * v2[], (type)v1[] * v2[]);
- }
- template<typename T>
- inline vec2<T> operator*(const vec2<T>& v1, const vec2<T>& v2)
- {
- //the operator of * ,example (1,2) * (2,3) -> (2,6)
- return vec2<T>(v1[] * v2[], v1[] * v2[]);
- }
- template<typename T, typename E>
- inline vec2<T> operator*(const vec2<T>& v, const E factor)
- {
- return vec2<T>(v.x() * factor, v.y() * factor);
- }
- template<typename T, typename E>
- inline vec2<T> operator*(const E factor, const vec2<T>& v)
- {
- return vec2<T>(v.x() * factor, v.y() * factor);
- }
- template<typename A, typename B>
- inline auto operator/(const vec2<A>& v1, const vec2<B>& v2)
- {
- //the operator of / ,example (1.1, 2.1) * (2, 3) -> (0.55, 0.7)
- assert(v2.isnull());
- using type = decltype(v1[] / v2[]);
- return vec2<type>((type)v1[] / v2[], (type)v1[] / v2[]);
- }
- template<typename T>
- inline vec2<T> operator/(const vec2<T>& v1, const vec2<T>& v2)
- {
- //the operator of / ,example 3 * 5 -> 15 , (1,2) * (2,3) -> (1/2,2/3)
- assert(v2.isnull());
- return operator/<T, T> (v1, v2);
- }
- template<typename T, typename E>
- inline vec2<T> operator/(const vec2<T>& v, const E factor)
- {
- assert(factor != && factor != .);
- return vec2<T>(v.x() / factor, v.y() / factor);
- }
- template<typename T>
- inline bool operator==(const vec2<T>& v1, const vec2<T>& v2)
- {
- return v1.x() == v2.x() && v1.y() == v2.y();
- }
- template<typename T>
- inline bool operator!=(const vec2<T>& v1, const vec2<T>& v2)
- {
- return !(v1 == v2);
- }
- // Unary operator functions [mem]
- template<typename T>
- inline const vec2<T>& vec2<T>::operator+() const
- {
- //the operator of + ,example 5 -> +5, +(1,-2) -> (1,-2)
- return *this;
- }
- template<typename T>
- inline vec2<T> vec2<T>::operator-() const
- {
- //the operator of - ,example 5 -> -5, -(1,-2) -> (-1,2)
- return vec2<T>(-_x, -_y);
- }
- template<typename T>
- inline vec2<T>& vec2<T>::operator++()
- {
- ++this->_x;
- ++this->_y;
- return *this;
- }
- template<typename T>
- inline const vec2<T> vec2<T>::operator++(int)
- {
- vec2<T>ori(*this);
- ++*this;
- return ori;
- }
- template<typename T>
- inline vec2<T>& vec2<T>::operator--()
- {
- --this->_x;
- --this->_y;
- return *this;
- }
- template<typename T>
- inline const vec2<T> vec2<T>::operator--(int)
- {
- vec2<T>ori(*this);
- --*this;
- return ori;
- }
- template<typename T>
- inline const T& vec2<T>::operator[](const int index)const
- {
- if (index == )return _x;
- else if (index == )return _y;
- else throw "the index is error";
- }
- template<typename T>
- inline T& vec2<T>::operator[](const int index)
- {
- if (index == )return _x;
- else if (index == )return _y;
- else throw "the index is error";
- }
- // member functions
- template<typename T>
- inline vec2<T>& vec2<T>::operator=(const vec2<T>& rhs)
- {
- if (this != &rhs)
- {
- _x = rhs._x;
- _y = rhs._y;
- }
- return *this;
- }
- template<typename T>
- inline vec2<T>& vec2<T>::operator+=(const vec2& rhs)
- {
- this->_x += rhs._x;
- this->_y += rhs._y;
- return *this;
- }
- template<typename T>
- inline vec2<T>& vec2<T>::operator-=(const vec2& rhs)
- {
- return *this += (-rhs);
- }
- template<typename T>
- inline vec2<T>& vec2<T>::operator/=(const vec2<T>& rhs)
- {
- assert(!rhs.isnull());
- this->_x /= rhs._x;
- this->_y /= rhs._y;
- return *this;
- }
- template<typename T>
- inline vec2<T>& vec2<T>::operator*=(const vec2<T>& rhs)
- {
- this->_x *= rhs._x;
- this->_y *= rhs._y;
- return *this;
- }
- template<typename T>
- inline vec2<T>& vec2<T>::operator*=(const T factor)
- {
- this->_x *= factor;
- this->_y *= factor;
- return *this;
- }
- template<typename T>
- inline vec2<T>& vec2<T>::operator/=(const T factor)
- {
- assert(factor != );
- this->_x /= factor;
- this->_y /= factor;
- return *this;
- }
- template<typename T>
- inline typename vec2<T>::norm_t vec2<T>::normal()const
- {
- return sqrt(squar());
- }
- template<typename T>
- inline typename vec2<T>::norm_t vec2<T>::squar()const
- {
- return _x*_x + _y*_y;
- }
- template<typename T>
- inline void vec2<T>::self_unitization()
- {
- *this /= normal();
- }
- template<typename T>
- inline vec2<precision> vec2<T>::ret_unitization()const
- {
- norm_t div = normal();
- return vec2<norm_t>{ (norm_t)this->_x / div, (norm_t)this->_y / div, (norm_t)this->_z / div };
- }
- template<typename T, typename E>
- inline auto dot(const vec2<T>& v1, const vec2<E>& v2) //-> decltype(v1.x() * v2.x() + v1.y() * v2.y()
- {// x1 * x2 + y1 * y2
- return v1.x() * v2.x() + v1.y() * v2.y();
- }
- template<typename T, typename E>
- inline auto cross(const vec2<T> v1, const vec2<E>& v2)
- {// v1 × v2
- return v1[] * v2[] - v1[] * v2[];
- }
- template<typename T>
- inline bool vec2<T>::isnull()const
- {
- return *this == vec2<T>();
- }
- } //namespace lvgm
- #endif //LV_VEC2_H
lv_vec2.h
- /// myVec3.h
- // -----------------------------------------------------
- // [author] lv
- // [ time ] 2018.12 ~ 2018.12
- // [brief ] the definition of Three-dimensional vector
- // -----------------------------------------------------
- #ifndef LV_VEC3_H
- #define LV_VEC3_H
- namespace lvgm
- {
- template<typename T>
- class vec3
- {
- public:
- using value_type = T;
- using norm_t = precision;
- public:
- template<typename E>
- vec3(const vec3<E>& vec); //static_cast
- vec3(const T e1 = T(), const T e2 = T(), const T e3 = T())noexcept;
- explicit vec3(const vec2<T>& v2, const T e3 = T())noexcept;
- explicit vec3(const T e1, const vec2<T>& v)noexcept;
- explicit vec3(const vec3&);
- ~vec3() { }
- public:
- inline T& x() { return _x; }
- inline T& y() { return _y; }
- inline T& z() { return _z; }
- inline T& r() { return _x; }
- inline T& g() { return _y; }
- inline T& b() { return _z; }
- inline vec2<T> xy() { return vec2<T>{_x, _y}; }
- inline vec2<T> yx() { return vec2<T>{_y, _x}; }
- inline vec2<T> xz() { return vec2<T>{_x, _z}; }
- inline vec2<T> zx() { return vec2<T>{_z, _x}; }
- inline vec2<T> yz() { return vec2<T>{_y, _z}; }
- inline vec2<T> zy() { return vec2<T>{_z, _y}; }
- inline vec2<T> rg() { return vec2<T>{_x, _y}; }
- inline vec2<T> gr() { return vec2<T>{_y, _x}; }
- inline vec2<T> rb() { return vec2<T>{_x, _z}; }
- inline vec2<T> br() { return vec2<T>{_z, _x}; }
- inline vec2<T> gb() { return vec2<T>{_y, _z}; }
- inline vec2<T> bg() { return vec2<T>{_z, _y}; }
- inline vec3 rgb() { return vec3{_x, _y, _z}; }
- inline vec3 rbg() { return vec3{_x, _z, _y}; }
- inline vec3 gbr() { return vec3{_y, _z, _x}; }
- inline vec3 grb() { return vec3{_y, _x, _z}; }
- inline vec3 bgr() { return vec3{_z, _y, _x}; }
- inline vec3 brg() { return vec3{_z, _x, _y}; }
- inline const T& x()const { return _x; }
- inline const T& y()const { return _y; }
- inline const T& z()const { return _z; }
- inline const T& r()const { return _x; }
- inline const T& g()const { return _y; }
- inline const T& b()const { return _z; }
- //inline oprator function
- inline const vec3& operator+() const;
- inline vec3 operator-()const;
- inline vec3& operator++();
- inline vec3& operator--();
- inline const vec3 operator++(int);
- inline const vec3 operator--(int);
- inline const T& operator[](const int index)const;
- inline T& operator[](const int index);
- inline vec3& operator=(const vec3& rhs);
- inline vec3& operator+=(const vec3& rhs);
- inline vec3& operator-=(const vec3& rhs);
- inline vec3& operator*=(const vec3& rhs);
- inline vec3& operator/=(const vec3& rhs);
- inline vec3& operator*=(const T factor);
- inline vec3& operator/=(const T factor);
- public:
- //return the Norm of vec3
- inline norm_t normal()const;
- inline norm_t squar()const;
- //let self become to the unit vector of vec_type
- inline void self_unitization();
- //return a non-integer three-dimensional unit vector [the type is norm_t]
- inline vec3<precision> ret_unitization()const;
- inline bool isnull()const;
- private:
- T _x, _y, _z;
- };
- //constructor functions
- template<typename T>
- template<typename E>
- vec3<T>::vec3(const vec3<E>& vec)
- :_x(static_cast<T>(vec.x()))
- ,_y(static_cast<T>(vec.y()))
- ,_z(static_cast<T>(vec.z()))
- { }
- template<typename T>
- vec3<T>::vec3(const T e1, const T e2, const T e3)noexcept
- :_x{e1}
- ,_y{e2}
- ,_z{e3}
- { }
- template<typename T>
- vec3<T>::vec3(const vec2<T>& v, const T e3)noexcept
- :_x(v.x())
- ,_y(v.y())
- ,_z(e3)
- { }
- template<typename T>
- vec3<T>::vec3(const T e, const vec2<T>& v)noexcept
- :_x(e)
- ,_y(v.x())
- ,_z(v.y())
- { }
- template<typename T>
- vec3<T>::vec3(const vec3<T>& rhs)
- :_x{rhs._x}
- ,_y{rhs._y}
- ,_z{rhs._z}
- { }
- // Binary operator functions [non-mem]
- template<typename T>
- vec3<T> operator+(const vec3<T>& v1, const vec3<T>& v2)
- {
- //the operator of + ,example (5,4,3) + (2,-2,1) -> (7,2,4)
- return vec3<T>(v1[] + v2[], v1[] + v2[], v1[] + v2[]);
- }
- template<typename T>
- inline vec3<T> operator-(const vec3<T>& v1, const vec3<T>& v2)
- {
- //the operator of - ,example (5,4,3) - (2,2,1) -> (3,2,2)
- return v1 + (-v2);
- }
- template<typename A, typename B>
- inline auto operator*(const vec3<A>& v1, const vec3<B>& v2)
- {
- //the operator of * ,example (1.1, 2.1, 3.1) * (2, 3, 4) -> (2.2, 6.3, 12.4)
- using type = decltype(v1[] * v2[]);
- return vec3<type>((type)v1[] * v2[], (type)v1[] * v2[], (type)v1[] * v2[]);
- }
- template<typename T>
- inline vec3<T> operator*(const vec3<T>& v1, const vec3<T>& v2)
- {
- //the operator of * ,example 3 * 5 -> 15 , (1,2,3) * (2,3,4) -> (2,6,12)
- return vec3<T>(v1[] * v2[], v1[] * v2[], v1[] * v2[]);
- }
- template<typename T, typename E>
- inline vec3<T> operator*(const vec3<T>& v, const E factor)
- {
- return vec3<T>(v.x() * factor, v.y() * factor, v.z() * factor);
- }
- template<typename T, typename E>
- inline vec3<T> operator*(const E factor, const vec3<T>& v)
- {
- return vec3<T>(v.x() * factor, v.y() * factor, v.z() * factor);
- }
- template<typename A, typename B>
- inline auto operator/(const vec3<A>& v1, const vec3<B>& v2)
- {
- //the operator of / ,example (1.1, 2.1, 3.2) * (2, 3, 4) -> (0.55, 0.7, 0.8)
- assert(v2.isnull());
- using type = decltype(v1[] / v2[]);
- return vec3<type>((type)v1[] / v2[], (type)v1[] / v2[], (type)v1[] / v2[]);
- }
- template<typename T>
- inline vec3<T> operator/(const vec3<T>& v1, const vec3<T>& v2)
- {
- //the operator of / ,example 3 * 5 -> 15 , (1,2,3) * (2,3,4) -> (1/2,2/3,3/4)
- assert(v2.isnull());
- return operator/<T, T> (v1, v2);
- }
- template<typename T, typename E>
- inline vec3<T> operator/(const vec3<T>& v, const E factor)
- {
- assert(factor != && factor != .);
- return vec3<T>(v.x() / factor, v.y() / factor, v.z() / factor);
- }
- template<typename T>
- inline bool operator==(const vec3<T>& v1, const vec3<T>& v2)
- {
- return v1.x() == v2.x() && v1.y() == v2.y() && v1.z() == v2.z();
- }
- template<typename T>
- inline bool operator!=(const vec3<T>& v1, vec3<T>& v2)
- {
- return !(v1 == v2);
- }
- // Unary operator functions [mem]
- template<typename T>
- inline const vec3<T>& vec3<T>::operator+() const
- {
- //the operator of + ,example 5 -> +5, +(1,-2,3) -> (1,-2,3)
- return *this;
- }
- template<typename T>
- inline vec3<T> vec3<T>::operator-() const
- {
- //the operator of - ,example 5 -> -5, -(1,-2,3) -> (-1,2,-3)
- return vec3<T>(-_x, -_y, -_z);
- }
- template<typename T>
- inline vec3<T>& vec3<T>::operator++()
- {
- ++this->_x;
- ++this->_y;
- ++this->_z;
- return *this;
- }
- template<typename T>
- inline const vec3<T> vec3<T>::operator++(int)
- {
- vec3<T>ori(*this);
- ++*this;
- return ori;
- }
- template<typename T>
- inline vec3<T>& vec3<T>::operator--()
- {
- --this->_x;
- --this->_y;
- --this->_z;
- return *this;
- }
- template<typename T>
- inline const vec3<T> vec3<T>::operator--(int)
- {
- vec3<T>ori(*this);
- --*this;
- return ori;
- }
- template<typename T>
- inline const T& vec3<T>::operator[](const int index)const
- {
- if (index == )return _x;
- else if (index == )return _y;
- else if (index == )return _z;
- else throw "the index is error";
- }
- template<typename T>
- inline T& vec3<T>::operator[](const int index)
- {
- if (index == )return _x;
- else if (index == )return _y;
- else if (index == )return _z;
- else throw "the index is error";
- }
- // member functions
- template<typename T>
- inline vec3<T>& vec3<T>::operator=(const vec3<T>& rhs)
- {
- if (this != &rhs)
- {
- _x = rhs._x;
- _y = rhs._y;
- _z = rhs._z;
- }
- return *this;
- }
- template<typename T>
- inline vec3<T>& vec3<T>::operator+=(const vec3& rhs)
- {
- this->_x += rhs._x;
- this->_y += rhs._y;
- this->_z += rhs._z;
- return *this;
- }
- template<typename T>
- inline vec3<T>& vec3<T>::operator-=(const vec3& rhs)
- {
- this->_x -= rhs._x;
- this->_y -= rhs._y;
- this->_z -= rhs._z;
- return *this;
- }
- template<typename T>
- inline vec3<T>& vec3<T>::operator/=(const vec3<T>& rhs)
- {
- assert(!rhs.isnull());
- this->_x /= rhs._x;
- this->_y /= rhs._y;
- this->_z /= rhs._z;
- return *this;
- }
- template<typename T>
- inline vec3<T>& vec3<T>::operator*=(const vec3<T>& rhs)
- {
- this->_x *= rhs._x;
- this->_y *= rhs._y;
- this->_z *= rhs._z;
- return *this;
- }
- template<typename T>
- inline vec3<T>& vec3<T>::operator*=(const T factor)
- {
- this->_x *= factor;
- this->_y *= factor;
- this->_z *= factor;
- return *this;
- }
- template<typename T>
- inline vec3<T>& vec3<T>::operator/=(const T factor)
- {
- assert(factor != );
- this->_x /= factor;
- this->_y /= factor;
- this->_z /= factor;
- return *this;
- }
- template<typename T>
- inline typename vec3<T>::norm_t vec3<T>::normal()const
- {
- return sqrt(squar());
- }
- template<typename T>
- inline typename vec3<T>::norm_t vec3<T>::squar()const
- {
- return _x*_x + _y*_y + _z*_z;
- }
- template<typename T>
- inline void vec3<T>::self_unitization()
- {
- *this /= normal();
- }
- template<typename T>
- inline vec3<precision> vec3<T>::ret_unitization()const
- {
- norm_t div = normal();
- return vec3<norm_t>{ (norm_t)this->_x / div,(norm_t)this->_y / div,(norm_t)this->_z / div };
- }
- template<typename T, typename E>
- inline auto dot(const vec3<T>& v1, const vec3<E>& v2) //-> decltype(v1.x() * v2.x() + v1.y() * v2.y() + v1.z() * v2.z())
- {// x1 * x2 + y1 * y2 + z1 * z2
- return v1.x() * v2.x() + v1.y() * v2.y() + v1.z() * v2.z();
- }
- template<typename T, typename E>
- inline auto cross(const vec3<T> v1, const vec3<E>& v2)
- {// v1 × v2
- return vec3<decltype(v1[] * v2[] - v1[] * v2[])>
- (
- v1[] * v2[] - v1[] * v2[],
- v1[] * v2[] - v1[] * v2[],
- v1[] * v2[] - v1[] * v2[]
- );
- }
- template<typename T>
- inline bool vec3<T>::isnull()const
- {
- return *this == vec3<T>();
- }
- } //namespace lvgm
- #endif //LV_VEC3_H
lv_vec3.h
- /// all vectors are in here
- // -----------------------------------------------------
- // [author] lv
- // [ time ] 2018.12 ~ 2018.12
- // [brief ] all vectors are in here
- // -----------------------------------------------------
- #pragma once
- #include <iostream>
- #include <cmath>
- #include <cassert>
- #include <lvgm\lv_precision.h>
- #include "lv_vec2.h"
- #include "lv_vec3.h"
- #include "vec_inout.h"
- namespace lvgm
- {
- template<typename T> class vec2;
- template<typename T> class vec3;
- template<typename T> class vec4;
- typedef vec2<bool> bvec2;
- typedef vec2<char> cvec2;
- typedef vec2<short> svec2;
- typedef vec2<int> ivec2;
- typedef vec2<float> fvec2;
- typedef vec2<double> dvec2;
- typedef vec2<long double> ldvec2;
- typedef vec3<bool> bvec3;
- typedef vec3<char> cvec3;
- typedef vec3<short> svec3;
- typedef vec3<int> ivec3;
- typedef vec3<float> fvec3;
- typedef vec3<double> dvec3;
- typedef vec3<long double> ldvec3;
- typedef vec4<bool> bvec4;
- typedef vec4<char> cvec4;
- typedef vec4<short> svec4;
- typedef vec4<int> ivec4;
- typedef vec4<float> fvec4;
- typedef vec4<double> dvec4;
- typedef vec4<long double> ldvec4;
- }
type_vec.h
- ///vec_inout.h
- // -----------------------------------------------------
- // [author] lv
- // [ time ] 2018.12 ~ 2018.12
- // [brief ] control the iostream of vec
- // -----------------------------------------------------
- #pragma once
- # ifdef VEC_OUT
- template<typename T>
- std::ostream& operator<<(std::ostream& cout, const lvgm::vec2<T>& v)
- {
- cout << "[ " << v.x() << ", " << v.y() << " ]";
- return cout;
- }
- template<typename T>
- std::ostream& operator<<(std::ostream& cout, const lvgm::vec3<T>& v)
- {
- cout << "[ " << v.x() << ", " << v.y() << ", " << v.z() << " ]";
- return cout;
- }
- template<typename T>
- std::ostream& operator<<(std::ostream& cout, const lvgm::vec4<T>& v)
- {
- cout << "[ " << v.x() << ", " << v.y() << ", " << v.z() << v.w() << " ]";
- return cout;
- }
- #endif
- # ifdef VEC2_OUT
- template<typename T>
- std::ostream& operator<<(std::ostream& cout, const lvgm::vec2<T>& v)
- {
- cout << "[ " << v.x() << ", " << v.y() << " ]";
- return cout;
- }
- #endif
- # ifdef VEC3_OUT
- template<typename T>
- std::ostream& operator<<(std::ostream& cout, const lvgm::vec3<T>& v)
- {
- cout << "[ " << v.x() << ", " << v.y() << ", " << v.z() << " ]";
- return cout;
- }
- #endif
- # ifdef VEC4_OUT
- template<typename T>
- std::ostream& operator<<(std::ostream& cout, const lvgm::vec4<T>& v)
- {
- cout << "[ " << v.x() << ", " << v.y() << ", " << v.z() << v.w() << " ]";
- return cout;
- }
- #endif
vec_inout.h
如有什么问题,请于评论区留言或者邮箱(^_^)
感谢您的阅读,生活愉快`
<泛> C++3D数学库设计详解 向量篇的更多相关文章
- <泛> C++3D数学库设计详解 简单光学几何 && 随机向量生成
// 注:本内容为作者原创,禁止在其他网站复述内容以及用于商业盈利,如需引用,请标明出处:http://www.cnblogs.com/lv_anchoret/ Preface 当初写这个库,是为了 ...
- Dubbo架构设计详解-转
Dubbo架构设计详解 2013-09-03 21:26:59 Yanjun Dubbo是Alibaba开源的分布式服务框架,它最大的特点是按照分层的方式来架构,使用这种方式可以使各个层之间解 ...
- Java生鲜电商平台-Java后端生成Token架构与设计详解
Java生鲜电商平台-Java后端生成Token架构与设计详解 目的:Java开源生鲜电商平台-Java后端生成Token目的是为了用于校验客户端,防止重复提交. 技术选型:用开源的JWT架构. 1. ...
- Python爬虫之selenium库使用详解
Python爬虫之selenium库使用详解 本章内容如下: 什么是Selenium selenium基本使用 声明浏览器对象 访问页面 查找元素 多个元素查找 元素交互操作 交互动作 执行JavaS ...
- STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解)
目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) 前面 ...
- [转帖]前端-chromeF12 谷歌开发者工具详解 Console篇
前端-chromeF12 谷歌开发者工具详解 Console篇 https://blog.csdn.net/qq_39892932/article/details/82655866 趁着搞 cloud ...
- bt协议详解 DHT篇(上)
bt协议详解 DHT篇(上) 最近开发了一个免费教程的网站,突然产生了仔细了解bt协议的想法,这篇文章是bt协议详解系列的第三篇,后续还会写一些关于搜索和索引的东西,都是在开发这个网站的过程中学习到的 ...
- [转帖]前端-chromeF12 谷歌开发者工具详解 Network篇
前端-chromeF12 谷歌开发者工具详解 Network篇 https://blog.csdn.net/qq_39892932/article/details/82493922 blog 也是原作 ...
- RocketMQ源码详解 | Broker篇 · 其一:线程模型与接收链路
概述 在上一节 RocketMQ源码详解 | Producer篇 · 其二:消息组成.发送链路 中,我们终于将消息发送出了 Producer,在短暂的 tcp 握手后,很快它就会进入目的 Broker ...
随机推荐
- 线搜索(line search)方法
在机器学习中, 通常需要求某个函数的最值(比如最大似然中需要求的似然的最大值). 线搜索(line search)是求得一个函数\(f(x)\)的最值的两种常用迭代方法之一(另外一个是trust re ...
- window环境下使用sbt编译spark源码
前些天用maven编译打包spark,搞得焦头烂额的,各种错误,层出不穷,想想也是醉了,于是乎,换种方式,使用sbt编译,看看人品如何! 首先,从官网spark官网下载spark源码包,解压出来.我这 ...
- 【leetcode 简单】 第六十四题 翻转二叉树
翻转一棵二叉树. 示例: 输入: 4 / \ 2 7 / \ / \ 1 3 6 9 输出: 4 / \ 7 2 / \ / \ 9 6 3 1 备注: 这个问题是受到 Max Howell的 原问题 ...
- Mysql服务优化
Mysql服务优化 Mysql服务加速优化的6个阶段 硬件层面优化 操作系统层面优化 Mysql数据库层面优化 网站集群架构层面优化 安全优化 流程.制度控制优化 1.硬件层面优化 CPU ...
- 【译】第二篇 Integration Services:SSIS数据泵
本篇文章是Integration Services系列的第二篇,详细内容请参考原文. 简介SSIS用于移动数据.数据流任务提供此功能.因为这个原因,当介绍SSIS时我喜欢从数据流任务开始.数据流任务的 ...
- es6解构、中括号前加分号
在写项目的时候,为了方便使用了下对象的解构,无奈又遇到一坑. 为什么会不能解构呢?因为这里的{}会导致歧义,因为 JavaScript 引擎会将{xxxxx}理解成一个代码块,从而发生语法错误.只有不 ...
- JavaScript 优雅的实现方式包含你可能不知道的知识点
有些东西很好用,但是你未必知道:有些东西你可能用过,但是你未必知道原理. 实现一个目的有多种途径,俗话说,条条大路通罗马.很多内容来自平时的一些收集以及过往博客文章底下的精彩评论,收集整理拓展一波,发 ...
- linux下的usb抓包方法【转】
转自:http://blog.chinaunix.net/uid-11848011-id-4508834.html 1.配置内核使能usb monitor: make menuconfig ...
- 【Linux技术】ubuntu常用命令【转】
转自:http://www.cnblogs.com/lcw/p/3159462.html 查看软件xxx安装内容:dpkg -L xxx查找软件库中的软件:apt-cache search 正则表达式 ...
- Mysql_Learning_Notes_mysql系统结构_2
Mysql_Learning_Notes_mysql系统结构_2 三层体系结构,启动方式,日志类型及解析方法,mysql 升级 连接层 通信协议处理\线程处理\账号认证(用户名和密码认证)\安全检查等 ...