http://www.lydsy.com/JudgeOnline/problem.php?id=3571 (题目链接)

题意

  给出一个$2*N$个点的二分图,$N*N$条边,连接$i$和$j$的边有两个权值$A[i][j]$和$B[i][j]$。求$A$的和与$B$的和之积最小是多少。

Solution

  很经典的一个模型,右转题解→_→:http://blog.csdn.net/thy_asdf/article/details/50382556

  对于一类乘积最小的题目的方法,我们都可以把每种方案的$x$之和与$y$之和作为它们的坐标$(x,y)$

  要让乘积最小,那么作为答案的点一定在下凸壳上

  我们先求出$x$最小的方案的坐标,再求出$y$最小的方案的坐标

  这就是凸壳的两个端点$A$和$B$

  然后考虑分治,每次找出离直线$AB$最远的点$C$,再继续递归处理

  要使距离最远,那么就是使向量$AB$与$AC$的叉积最大

  即最大化:$(c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x)$

  即:$c.x*(b.y-a.y)+c.y*(a.x-b.x)-a.x*(b.y-a.y)+a.y*(b.x-a.x)$

  后面一部分是常数不用管,我们只要使$c.x*(b.y-a.y)+c.y*(a.x-b.x)$最大化

  那么把$A[i][j]*(b.y-a.y)+B[i][j]*(a.x-b.x)$做$i$匹配$j$的边权

  跑一遍KM求出最大匹配即可得出叉积最大的匹配

  对于其他的最小乘积XXX,就类似地每次跑一遍XXX的算法求出离$AB$最远的方案即可

  直到不可以继续细分下去就返回两端点的匹配较小的一个即可

  虽然可以通过把所有方案构造在凸壳上卡掉这个算法,但随机情况下还是很快的

  

  然而我还不会KM,还学习了一发KM。

  对于边$(x,y)$

  1.$x$,$y$都在当前匹配$lx[x]-=d$,$ly[y]+=d$和不变,原来在新图中,现在还在新图中;

  2.$x$在,$y$不在,$lx[x]-=d$,$ly[y]$不变,原来不在新图中,现在和减小了,可能出现在新图中;

  3.$x$不在,$y$在,$lx[x]$不变,$ly[y]+=d$,原来不在新图中,现在和变大了,不会进入新图中;

  4.$x$,$y$都不在,那么$lx[x]$,$ly[y]$都不变,原来不在新图中,现在也不在新图中。

  所以只有情况$2$会产生新边,不会有边消失,那么新图的边数会越来越大,直到找到一个完备匹配。

细节

  听说这题卡常。。

  这样是$O(n^4)$的,所以有一个优化,记录一个$slack$数组$slack[y]=min(lx[x]+ly[y]-g[x][y])$($x$与$y$有边)。每次求$d$就只要对不在匹配中的$y$的$slack$取$min$即可

代码

// bzoj3571
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100;
int vx[maxn],vy[maxn],lx[maxn],ly[maxn],p[maxn],sla[maxn];
int n,g[maxn][maxn],A[maxn][maxn],B[maxn][maxn]; struct point {int x,y;
friend bool operator == (point a,point b) {
return a.x==b.x && a.y==b.y;
}
}L,R; int match(int x) {
vx[x]=1;
for (int y=1;y<=n;y++) if (!vy[y]) {
int t=lx[x]+ly[y]-g[x][y];
if (!t) {
vy[y]=1;
if (!p[y] || match(p[y])) {p[y]=x;return 1;}
}
else sla[y]=min(sla[y],t);
}
return 0;
}
point KM() {
memset(lx,0,sizeof(lx));
memset(ly,0,sizeof(ly));
memset(p,0,sizeof(p));
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) lx[i]=max(lx[i],g[i][j]);
for (int x=1;x<=n;x++) {
memset(sla,0x7f,sizeof(sla));
while (1) {
memset(vx,0,sizeof(vx));memset(vy,0,sizeof(vy));
if (match(x)) break;
int d=inf;
for (int i=1;i<=n;i++) if (!vy[i]) d=min(d,sla[i]);
for (int i=1;i<=n;i++) {
if (vx[i]) lx[i]-=d;
if (vy[i]) ly[i]+=d;
}
}
}
point ans=(point){0,0};
for (int i=1;i<=n;i++) ans.x+=A[p[i]][i],ans.y+=B[p[i]][i];
return ans;
}
int solve(point l,point r) {
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) g[i][j]=A[i][j]*(r.y-l.y)+B[i][j]*(l.x-r.x);
point mid=KM();
if (l==mid || r==mid) return min(l.x*l.y,r.x*r.y);
return min(solve(l,mid),solve(mid,r));
}
int main() {
int T;scanf("%d",&T);
while (T--) {
scanf("%d",&n);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) scanf("%d",&A[i][j]);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) scanf("%d",&B[i][j]);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) g[i][j]=-A[i][j];
L=KM();
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) g[i][j]=-B[i][j];
R=KM();
printf("%d\n",solve(L,R));
}
return 0;
}

【bzoj3751】 Hnoi2014—画框的更多相关文章

  1. 【LG3236】[HNOI2014]画框

    [LG3236][HNOI2014]画框 题面 洛谷 题解 和这题一模一样. 将最小生成树换成\(KM\)即可. 关于复杂度,因为决策点肯定在凸包上,且\(n\)凸包的期望点数为\(\sqrt {\l ...

  2. bzoj 3571: [Hnoi2014]画框

    Description 小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框.为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和.对于第 幅画与第 个画框的配对,小T都 ...

  3. [HNOI2014]画框

    题目描述 小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框.为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和. 对于第 幅画与第 个画框的配对,小T都给出了这个配 ...

  4. BZOJ3571 & 洛谷3236:[HNOI2014]画框——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3571 https://www.luogu.org/problemnew/show/P3236 小T ...

  5. BZOJ3571 : [Hnoi2014]画框

    题目是要求最小乘积最小权匹配, 将一种方案看做一个二维点(x,y),x=a值的和,y=b值的和,所有方案中只有在下凸壳上的点才有可能成为最优解 首先要求出两端的方案l,r两个点 l就是a值的和最小的方 ...

  6. bzoj3571: [Hnoi2014]画框 最小乘积匹配+最小乘积XX总结,

    思路大概同bzoj2395(传送门:http://www.cnblogs.com/DUXT/p/5739864.html),还是将每一种匹配方案的Σai看成x,Σbi看成y,然后将每种方案转化为平面上 ...

  7. luogu P3236 [HNOI2014]画框

    传送门 我们把一种方案的\(\sum a_{i,j}\)和\(\sum b_{i,j}\)看成点\((\sum a_{i,j},\sum b_{i,j})\),那么就只要求横纵坐标之积最小的点,类似于 ...

  8. BZOJ 3571 [Hnoi2014]画框(最小乘积完美匹配)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3571 [题目大意] 给出一张二分图,每条边上有a,b两个值,求完美匹配, 使得suma ...

  9. 洛谷P3236 [HNOI2014]画框(最小乘积KM)

    题面 传送门 题解 我似乎连\(KM\)都不会打啊→_→ 和bzoj2395是一样的,只不过把最小生成树换成\(KM\)了.因为\(KM\)跑的是最大权值所以取个反就行了 //minamoto #in ...

随机推荐

  1. Haproxy介绍、安装与配置

    Haproxy技术详解一. 介绍HAProxy是一个使用C语言编写的自由及开放源代码软件,其提供高可用性.负载均衡,以及基于TCP和HTTP的应用程序代理.HAProxy特别适用于那些负载特大的web ...

  2. RHEL7 利用单个物理网卡实现VLAN

    使用nmcli创建网桥配置 #nmcli connection add type bridge con-name br0 stp no 使用nmcli创建VLAN设备配置 #nmcli connect ...

  3. 02-matplotlib-散点图

    import numpy as np import matplotlib.pyplot as plt ''' 散点图显示两组数据的值,每个点的坐标位置的值决定 用户观察两种变量的相关性: 正相关 负相 ...

  4. 对PBFT算法的理解

    PBFT论文断断续续读了几遍,每次读或多或少都会有新的理解,结合最近的项目代码,对于共识的原理有了更清晰的认识.虽然之前写过一篇整理PBFT论文的博客,但是当时只是知道了怎么做,却不理解为什么.现在整 ...

  5. 个人作业Week7

    1.在做个人项目的时候,由于很久都没有写这么大的程序了,对程序的感觉还没有恢复,因此,没能完全完成个人项目.现在回去看个人项目的代码(针对完成的代码来看),完全就是一个大泥球,代码的结构性太差,基本上 ...

  6. cocos2d-x 相关文章资源(安卓开发)

    http://blog.csdn.net/sdhjob/article/details/38734993 http://www.cnblogs.com/code4app/p/4026665.html ...

  7. [Elite 2008 Dec USACO]Jigsaw Puzzles

    #include <iostream> #include <cstdio> #include <cstring> using namespace std; #def ...

  8. 结对项目作业报告——四则运算web项目

    成员:顾思宇2016011993 程羚2016012050   1.仓库地址:https://git.coding.net/DandelionClaw/WEB_Calculator.git 注: 本项 ...

  9. iOS开发面试题(中级)

    //想面试的童鞋们来看看自己会多少, 老鸟可以无视直接绕过...1. Object-c的类可以多重继承么?可以实现多个接口么?Category是什么?重写一个类的方式用继承好还是分类好?为什么?与Ex ...

  10. scrapy学习笔记(三):使用item与pipeline保存数据

    scrapy下使用item才是正经方法.在item中定义需要保存的内容,然后在pipeline处理item,爬虫流程就成了这样: 抓取 --> 按item规则收集需要数据 -->使用pip ...