http://www.lydsy.com/JudgeOnline/problem.php?id=3571 (题目链接)

题意

  给出一个$2*N$个点的二分图,$N*N$条边,连接$i$和$j$的边有两个权值$A[i][j]$和$B[i][j]$。求$A$的和与$B$的和之积最小是多少。

Solution

  很经典的一个模型,右转题解→_→:http://blog.csdn.net/thy_asdf/article/details/50382556

  对于一类乘积最小的题目的方法,我们都可以把每种方案的$x$之和与$y$之和作为它们的坐标$(x,y)$

  要让乘积最小,那么作为答案的点一定在下凸壳上

  我们先求出$x$最小的方案的坐标,再求出$y$最小的方案的坐标

  这就是凸壳的两个端点$A$和$B$

  然后考虑分治,每次找出离直线$AB$最远的点$C$,再继续递归处理

  要使距离最远,那么就是使向量$AB$与$AC$的叉积最大

  即最大化:$(c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x)$

  即:$c.x*(b.y-a.y)+c.y*(a.x-b.x)-a.x*(b.y-a.y)+a.y*(b.x-a.x)$

  后面一部分是常数不用管,我们只要使$c.x*(b.y-a.y)+c.y*(a.x-b.x)$最大化

  那么把$A[i][j]*(b.y-a.y)+B[i][j]*(a.x-b.x)$做$i$匹配$j$的边权

  跑一遍KM求出最大匹配即可得出叉积最大的匹配

  对于其他的最小乘积XXX,就类似地每次跑一遍XXX的算法求出离$AB$最远的方案即可

  直到不可以继续细分下去就返回两端点的匹配较小的一个即可

  虽然可以通过把所有方案构造在凸壳上卡掉这个算法,但随机情况下还是很快的

  

  然而我还不会KM,还学习了一发KM。

  对于边$(x,y)$

  1.$x$,$y$都在当前匹配$lx[x]-=d$,$ly[y]+=d$和不变,原来在新图中,现在还在新图中;

  2.$x$在,$y$不在,$lx[x]-=d$,$ly[y]$不变,原来不在新图中,现在和减小了,可能出现在新图中;

  3.$x$不在,$y$在,$lx[x]$不变,$ly[y]+=d$,原来不在新图中,现在和变大了,不会进入新图中;

  4.$x$,$y$都不在,那么$lx[x]$,$ly[y]$都不变,原来不在新图中,现在也不在新图中。

  所以只有情况$2$会产生新边,不会有边消失,那么新图的边数会越来越大,直到找到一个完备匹配。

细节

  听说这题卡常。。

  这样是$O(n^4)$的,所以有一个优化,记录一个$slack$数组$slack[y]=min(lx[x]+ly[y]-g[x][y])$($x$与$y$有边)。每次求$d$就只要对不在匹配中的$y$的$slack$取$min$即可

代码

// bzoj3571
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100;
int vx[maxn],vy[maxn],lx[maxn],ly[maxn],p[maxn],sla[maxn];
int n,g[maxn][maxn],A[maxn][maxn],B[maxn][maxn]; struct point {int x,y;
friend bool operator == (point a,point b) {
return a.x==b.x && a.y==b.y;
}
}L,R; int match(int x) {
vx[x]=1;
for (int y=1;y<=n;y++) if (!vy[y]) {
int t=lx[x]+ly[y]-g[x][y];
if (!t) {
vy[y]=1;
if (!p[y] || match(p[y])) {p[y]=x;return 1;}
}
else sla[y]=min(sla[y],t);
}
return 0;
}
point KM() {
memset(lx,0,sizeof(lx));
memset(ly,0,sizeof(ly));
memset(p,0,sizeof(p));
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) lx[i]=max(lx[i],g[i][j]);
for (int x=1;x<=n;x++) {
memset(sla,0x7f,sizeof(sla));
while (1) {
memset(vx,0,sizeof(vx));memset(vy,0,sizeof(vy));
if (match(x)) break;
int d=inf;
for (int i=1;i<=n;i++) if (!vy[i]) d=min(d,sla[i]);
for (int i=1;i<=n;i++) {
if (vx[i]) lx[i]-=d;
if (vy[i]) ly[i]+=d;
}
}
}
point ans=(point){0,0};
for (int i=1;i<=n;i++) ans.x+=A[p[i]][i],ans.y+=B[p[i]][i];
return ans;
}
int solve(point l,point r) {
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) g[i][j]=A[i][j]*(r.y-l.y)+B[i][j]*(l.x-r.x);
point mid=KM();
if (l==mid || r==mid) return min(l.x*l.y,r.x*r.y);
return min(solve(l,mid),solve(mid,r));
}
int main() {
int T;scanf("%d",&T);
while (T--) {
scanf("%d",&n);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) scanf("%d",&A[i][j]);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) scanf("%d",&B[i][j]);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) g[i][j]=-A[i][j];
L=KM();
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++) g[i][j]=-B[i][j];
R=KM();
printf("%d\n",solve(L,R));
}
return 0;
}

【bzoj3751】 Hnoi2014—画框的更多相关文章

  1. 【LG3236】[HNOI2014]画框

    [LG3236][HNOI2014]画框 题面 洛谷 题解 和这题一模一样. 将最小生成树换成\(KM\)即可. 关于复杂度,因为决策点肯定在凸包上,且\(n\)凸包的期望点数为\(\sqrt {\l ...

  2. bzoj 3571: [Hnoi2014]画框

    Description 小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框.为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和.对于第 幅画与第 个画框的配对,小T都 ...

  3. [HNOI2014]画框

    题目描述 小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框.为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和. 对于第 幅画与第 个画框的配对,小T都给出了这个配 ...

  4. BZOJ3571 & 洛谷3236:[HNOI2014]画框——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3571 https://www.luogu.org/problemnew/show/P3236 小T ...

  5. BZOJ3571 : [Hnoi2014]画框

    题目是要求最小乘积最小权匹配, 将一种方案看做一个二维点(x,y),x=a值的和,y=b值的和,所有方案中只有在下凸壳上的点才有可能成为最优解 首先要求出两端的方案l,r两个点 l就是a值的和最小的方 ...

  6. bzoj3571: [Hnoi2014]画框 最小乘积匹配+最小乘积XX总结,

    思路大概同bzoj2395(传送门:http://www.cnblogs.com/DUXT/p/5739864.html),还是将每一种匹配方案的Σai看成x,Σbi看成y,然后将每种方案转化为平面上 ...

  7. luogu P3236 [HNOI2014]画框

    传送门 我们把一种方案的\(\sum a_{i,j}\)和\(\sum b_{i,j}\)看成点\((\sum a_{i,j},\sum b_{i,j})\),那么就只要求横纵坐标之积最小的点,类似于 ...

  8. BZOJ 3571 [Hnoi2014]画框(最小乘积完美匹配)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3571 [题目大意] 给出一张二分图,每条边上有a,b两个值,求完美匹配, 使得suma ...

  9. 洛谷P3236 [HNOI2014]画框(最小乘积KM)

    题面 传送门 题解 我似乎连\(KM\)都不会打啊→_→ 和bzoj2395是一样的,只不过把最小生成树换成\(KM\)了.因为\(KM\)跑的是最大权值所以取个反就行了 //minamoto #in ...

随机推荐

  1. canvas反向裁剪技巧

    我们都知道在canvas 可以通过clip来实现剪裁功能,其步骤一般是先设置要裁剪的区域(路径),然后通过ctx.clip()的实现裁剪,裁剪之后,后续的绘制只能在裁剪的区域显示效果,比如如下一段代码 ...

  2. 如何防范和应对Redis勒索,腾讯云教你出招

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯云数据库 TencentDB发表于云+社区专栏 9月10日下午,又一起规模化利用Redis未授权访问漏洞攻击数据库的事件发生,此次 ...

  3. 1、Ansible安装配置

    ansible介绍: Ansible是一款基于Python开发的自动化运维工具,主要是实现批量系统配置.批量程序部署.批量运行命令.批量执行任务等等诸多功能.Ansible是一款灵活的开源工具,能够很 ...

  4. Java多线程编程之不可变对象模式

           在多线程环境中,为了保证共享数据的一致性,往往需要对共享数据的使用进行加锁,但是加锁操作本身就会带来一定的开销,这里可以使用将共享数据使用不可变对象进行封装,从而避免加锁操作. 1. 模 ...

  5. nginx正向vs反向代理

    1.概述 nginx的正向代理,只能代理http.tcp等,不能代理https请求.有很多人不是很理解具体什么是nginx的正向代理.什么是反向代理.下面结合自己的使用做的一个简介: 1)正向代理: ...

  6. R语言安装R package的2种方法

    http://www.cnblogs.com/emanlee/archive/2012/12/05/2803606.html

  7. 05慕课网《进击Node.js基础(一)》HTTP概念进阶(同步/异步)

    HTTP模块介绍 支持http协议的更多特性 不缓存请求和响应 API比较底层处理流相关,信息解析 HTTP相关概念 回调 将函数作为参数传到执行函数中,参数函数在执行函数中嵌套执行 function ...

  8. 对网络助手的NABCD分析心得

    Sunny--Code团队::刘中睿,杜晓松,郑成 我们小组这次做的软件名字叫为校园网络助手.在大学学习的同学都知道学校里面有着内网与外网两种,并且有着流量限制,所以我们设计出来了这项软件,它主要有着 ...

  9. 寒假学习计划&进度

    学习计划 c语言查缺:这方面的查缺,我觉得我不需要花较多时间,因为老师上课讲的也足够详细,自己学的也自认为没有太多疏漏,所以我假期学习的中心放在了c++上面. c++学习:开始我先看了几集师爷的视频, ...

  10. BNUOJ 52303 Floyd-Warshall Lca+bfs最短路

    题目链接: https://www.bnuoj.com/v3/problem_show.php?pid=52303 Floyd-Warshall Time Limit: 60000msMemory L ...