Description

对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系。 星际空间站的Samuel II巨型计算机经过长期探测,已经锁定了Samuel星系中许多星球的空间坐标,并对这些星球从1开始编号1、2、3……。 一些先遣飞船已经出发,在星球之间开辟探险航线。 探险航线是双向的,例如从1号星球到3号星球开辟探险航线,那么从3号星球到1号星球也可以使用这条航线。 例如下图所示:



在5个星球之间,有5条探险航线。 A、B两星球之间,如果某条航线不存在,就无法从A星球抵达B星球,我们则称这条航线为关键航线。 显然上图中,1号与5号星球之间的关键航线有1条:即为4-5航线。 然而,在宇宙中一些未知的磁暴和行星的冲撞,使得已有的某些航线被破坏,随着越来越多的航线被破坏,探险飞船又不能及时回复这些航线,可见两个星球之间的关键航线会越来越多。 假设在上图中,航线4-2(从4号星球到2号星球)被破坏。此时,1号与5号星球之间的关键航线就有3条:1-3,3-4,4-5。 小联的任务是,不断关注航线被破坏的情况,并随时给出两个星球之间的关键航线数目。现在请你帮助完成。

Input

第一行有两个整数N,M。表示有N个星球(1< N < 30000),初始时已经有M条航线(1 < M < 100000)。随后有M行,每行有两个不相同的整数A、B表示在星球A与B之间存在一条航线。接下来每行有三个整数C、A、B。C为1表示询问当前星球A和星球B之间有多少条关键航线;C为0表示在星球A和星球B之间的航线被破坏,当后面再遇到C为1的情况时,表示询问航线被破坏后,关键路径的情况,且航线破坏后不可恢复; C为-1表示输入文件结束,这时该行没有A,B的值。被破坏的航线数目与询问的次数总和不超过40000。

Output

对每个C为1的询问,输出一行一个整数表示关键航线数目。 注意:我们保证无论航线如何被破坏,任意时刻任意两个星球都能够相互到达。在整个数据中,任意两个星球之间最多只可能存在一条直接的航线。

Sample Input

5 5

1 2

1 3

3 4

4 5

4 2

1 1 5

0 4 2

1 5 1

-1

Sample Output

1

3

Solution

LCT维护边双

发现如果用LCT维护边双后,询问两个点之间的关键路径,就是对两点拉链后链的长度减一

然后因为是动态删边,倒过来做,变成动态加边

这题就做完了(调的是真的久)

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=30000+10,MAXM=100000+10,MAXQ=40000+10,inf=0x3f3f3f3f;
int n,m,qs,V[MAXM],ans[MAXQ],fa[MAXN];
std::map<int,int> M[MAXN];
struct edge{
int u,v,w;
};
edge side[MAXM];
struct question{
int opt,u,v;
};
question Q[MAXQ];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN][2],fa[MAXN],bel[MAXN],rev[MAXN],stack[MAXN],cnt,sum[MAXN];
inline void init()
{
for(register int i=1;i<=n;++i)bel[i]=i;
}
inline int find(int x)
{
return bel[x]==x?x:bel[x]=find(bel[x]);
}
inline bool nroot(int x)
{
return lc(find(fa[x]))==x||rc(find(fa[x]))==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void dfs(int x,int rt)
{
if(lc(x))dfs(lc(x),rt);
if(rc(x))dfs(rc(x),rt);
if(x!=rt)bel[x]=rt;
}
inline void pushup(int x)
{
sum[x]=sum[lc(x)]+sum[rc(x)]+1;
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=find(fa[x]),p=find(fa[f]),c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=find(fa[i]))stack[++cnt]=find(fa[i]);
while(cnt)pushdown(stack[cnt--]);
for(register int y=find(fa[x]);nroot(x);rotate(x),y=find(fa[x]))
if(nroot(y))rotate((lc(y)==x)==(lc(find(fa[y]))==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=find(fa[y=x]))splay(x),rc(x)=y,pushup(x);
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
inline void add(int u,int v)
{
u=T.find(u),v=T.find(v);
int x=found(u),y=found(v);
if(u==v)return ;
if(x!=y)
{
fa[x]=y,T.link(u,v);
return ;
}
T.split(u,v);T.dfs(T.ch[v][0],v);
}
int main()
{
read(n);read(m);
T.init();
for(register int i=1;i<=n;++i)fa[i]=i;
for(register int i=1;i<=m;++i)
{
read(side[i].u),read(side[i].v);
if(side[i].u>side[i].v)std::swap(side[i].u,side[i].v);
M[side[i].u][side[i].v]=i;
}
qs=1;
read(Q[qs].opt);
while(Q[qs].opt!=-1)
{
read(Q[qs].u);read(Q[qs].v);
if(Q[qs].u>Q[qs].v)std::swap(Q[qs].u,Q[qs].v);
if(Q[qs].opt==0)V[M[Q[qs].u][Q[qs].v]]=1;
qs++;
read(Q[qs].opt);
}
qs--;
for(register int i=1;i<=m;++i)
if(V[i])continue;
else add(side[i].u,side[i].v);
for(register int i=qs;i;--i)
{
ans[i]=-inf;
if(Q[i].opt==1)
{
int x=T.find(Q[i].u),y=T.find(Q[i].v);
T.split(x,y);
ans[i]=T.sum[y]-1;
}
if(Q[i].opt==0)add(Q[i].u,Q[i].v);
}
for(register int i=1;i<=qs;++i)
if(ans[i]!=-inf)write(ans[i],'\n');
return 0;
}

【刷题】BZOJ 1969 [Ahoi2005]LANE 航线规划的更多相关文章

  1. BZOJ 1969: [Ahoi2005]LANE 航线规划( 树链剖分 )

    首先我们要时光倒流, 倒着做, 变成加边操作维护关键边. 先随意搞出一颗树, 树上每条边都是关键边(因为是树, 去掉就不连通了)....然后加边(u, v)时, 路径(u, v)上的所有边都变成非关键 ...

  2. ●BZOJ 1969 [Ahoi2005]LANE 航线规划

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1969 题解: 线段树,树链剖分,反向考虑思路是很巧妙,但是感觉代码真的恶心.. 反着考虑,先 ...

  3. BZOJ 1969: [Ahoi2005]LANE 航线规划 [树链剖分 时间倒流]

    题意: 一张图,删除边,求两点之间的割边数量.保证任意时刻图连通 任求一棵生成树,只有树边可能是割边 时间倒流,加入一条边,就是两点路径上的边都不可能是割边,区间覆盖... 然后本题需要把边哈希一下, ...

  4. 【BZOJ 1969】 1969: [Ahoi2005]LANE 航线规划 (树链剖分+线段树)

    1969: [Ahoi2005]LANE 航线规划 Description 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星 ...

  5. 【BZOJ】1969: [Ahoi2005]LANE 航线规划

    题目链接: 传送~~ 题解:  老夫实在是码不动了…… 正着搞显然不好做,尝试倒着乱搞.先给被删除的边标记一个时间戳,先删除的时间戳大,同时维护询问时间戳,询问早的时间戳大.没被删除过的边时间戳都是0 ...

  6. 【BZOJ1969】[Ahoi2005]LANE 航线规划 离线+树链剖分+线段树

    [BZOJ1969][Ahoi2005]LANE 航线规划 Description 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由 ...

  7. [Ahoi2005]LANE 航线规划

    题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...

  8. BZOJ1969: [Ahoi2005]LANE 航线规划(LCT)

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 587  Solved: 259[Submit][Status][Discuss] Description ...

  9. cogs1538 [AHOI2005]LANE 航线规划

    套路题+裸题 首先肯定离线,倒过来处理,删边->加边 连边的时候,如果不连通就连,否则在这两个点的链上打个覆盖标记,查询的时候输出没被覆盖的路径条数 #include<cstdio> ...

随机推荐

  1. 使用Fiddler进行APP弱网测试

    一.安装Fiddler 网上说要先安装.NET Framwork4,应该是由于本机已装,所以在安装Fiddler时并没有相关提示. Fiddler安装包:https://www.telerik.com ...

  2. == 和 equals 的区别是什么?

    已经有很多人说过二者的区别了,我直接上代码. String strA = "123"; String strB = "123"; String strC = & ...

  3. pytorch 如何使用tensorboard实时查看曲线---- tensorboardX简介

    用惯了tensorflow的小伙伴肯定都用过tensorboard工具吧.虽然Facebook也推出了visdom,但是在一次不小心误触clear之后,我放弃了这个工具(页面的一个clear按钮我本来 ...

  4. MCS锁——可伸缩的自旋锁

    在编写并发同步程序的时候,如果临界区非常小,比如说只有几条或几十条指令,那么我们可以选择自旋锁(spinlock).使用普通的互斥锁会涉及到操作系统的调度,因此小临界区一般首选自旋锁.自旋锁的工作方式 ...

  5. whoami,who,w命令详解

    http://www.voidcn.com/blog/wszzdanm/article/p-6145895.html 命令功能:显示登录用户的信息 命令格式: 常用选项: 举例: w 显示已经登录的用 ...

  6. Python基础系列讲解—动态类型语言的特点

    前言 在C语言中变量所分配到的地址是内存空间中一个固定的位置,当我们改变变量值时, 对应内存空间中的值也相应改变.在Python中变量存储的机制是完全不一样的,当给一个变量赋值时首先解释器会给这个值分 ...

  7. Redux和React-Redux的实现(一):Redux的实现和context

    react使用redux做状态管理,实现多个组件之间的信息共享,解决了父子组件.兄弟组件之间的复杂通信问题.vue有vuex,总之是一种flux的思想.react提供了react-redux这个库,一 ...

  8. jQuery源码分析之整体框架

    之前只是知道jQuery怎么使用,但是我觉得有必要认真的阅读一下这个库,在分析jQuery源码之前,很有必要对整个jQuery有个整体的框架概念,才能方便后面对jQuery源码的分析和学习,以下是我总 ...

  9. DataGridView 复选框 操作大全

    DataGridViewCheckBoxColumn dtCheck = new DataGridViewCheckBoxColumn(); dtCheck.DataPropertyName = &q ...

  10. First Scrum Meeting (2015/10/18)

    会议是在昨晚进行的,本来早就应该写博了,可惜今天校园网炸个不停= =.刚修好就赶紧来发博客. 会议基本要素 会议主题:爬虫项目的核心技术讨论以及项目初期的工作分配 会议时间:2015.10.18 19 ...