Description

对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系。 星际空间站的Samuel II巨型计算机经过长期探测,已经锁定了Samuel星系中许多星球的空间坐标,并对这些星球从1开始编号1、2、3……。 一些先遣飞船已经出发,在星球之间开辟探险航线。 探险航线是双向的,例如从1号星球到3号星球开辟探险航线,那么从3号星球到1号星球也可以使用这条航线。 例如下图所示:



在5个星球之间,有5条探险航线。 A、B两星球之间,如果某条航线不存在,就无法从A星球抵达B星球,我们则称这条航线为关键航线。 显然上图中,1号与5号星球之间的关键航线有1条:即为4-5航线。 然而,在宇宙中一些未知的磁暴和行星的冲撞,使得已有的某些航线被破坏,随着越来越多的航线被破坏,探险飞船又不能及时回复这些航线,可见两个星球之间的关键航线会越来越多。 假设在上图中,航线4-2(从4号星球到2号星球)被破坏。此时,1号与5号星球之间的关键航线就有3条:1-3,3-4,4-5。 小联的任务是,不断关注航线被破坏的情况,并随时给出两个星球之间的关键航线数目。现在请你帮助完成。

Input

第一行有两个整数N,M。表示有N个星球(1< N < 30000),初始时已经有M条航线(1 < M < 100000)。随后有M行,每行有两个不相同的整数A、B表示在星球A与B之间存在一条航线。接下来每行有三个整数C、A、B。C为1表示询问当前星球A和星球B之间有多少条关键航线;C为0表示在星球A和星球B之间的航线被破坏,当后面再遇到C为1的情况时,表示询问航线被破坏后,关键路径的情况,且航线破坏后不可恢复; C为-1表示输入文件结束,这时该行没有A,B的值。被破坏的航线数目与询问的次数总和不超过40000。

Output

对每个C为1的询问,输出一行一个整数表示关键航线数目。 注意:我们保证无论航线如何被破坏,任意时刻任意两个星球都能够相互到达。在整个数据中,任意两个星球之间最多只可能存在一条直接的航线。

Sample Input

5 5

1 2

1 3

3 4

4 5

4 2

1 1 5

0 4 2

1 5 1

-1

Sample Output

1

3

Solution

LCT维护边双

发现如果用LCT维护边双后,询问两个点之间的关键路径,就是对两点拉链后链的长度减一

然后因为是动态删边,倒过来做,变成动态加边

这题就做完了(调的是真的久)

#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=30000+10,MAXM=100000+10,MAXQ=40000+10,inf=0x3f3f3f3f;
int n,m,qs,V[MAXM],ans[MAXQ],fa[MAXN];
std::map<int,int> M[MAXN];
struct edge{
int u,v,w;
};
edge side[MAXM];
struct question{
int opt,u,v;
};
question Q[MAXQ];
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN][2],fa[MAXN],bel[MAXN],rev[MAXN],stack[MAXN],cnt,sum[MAXN];
inline void init()
{
for(register int i=1;i<=n;++i)bel[i]=i;
}
inline int find(int x)
{
return bel[x]==x?x:bel[x]=find(bel[x]);
}
inline bool nroot(int x)
{
return lc(find(fa[x]))==x||rc(find(fa[x]))==x;
}
inline void reverse(int x)
{
std::swap(lc(x),rc(x));
rev[x]^=1;
}
inline void dfs(int x,int rt)
{
if(lc(x))dfs(lc(x),rt);
if(rc(x))dfs(rc(x),rt);
if(x!=rt)bel[x]=rt;
}
inline void pushup(int x)
{
sum[x]=sum[lc(x)]+sum[rc(x)]+1;
}
inline void pushdown(int x)
{
if(rev[x])
{
if(lc(x))reverse(lc(x));
if(rc(x))reverse(rc(x));
rev[x]=0;
}
}
inline void rotate(int x)
{
int f=find(fa[x]),p=find(fa[f]),c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
pushup(f);
pushup(x);
}
inline void splay(int x)
{
cnt=0;
stack[++cnt]=x;
for(register int i=x;nroot(i);i=find(fa[i]))stack[++cnt]=find(fa[i]);
while(cnt)pushdown(stack[cnt--]);
for(register int y=find(fa[x]);nroot(x);rotate(x),y=find(fa[x]))
if(nroot(y))rotate((lc(y)==x)==(lc(find(fa[y]))==y)?y:x);
pushup(x);
}
inline void access(int x)
{
for(register int y=0;x;x=find(fa[y=x]))splay(x),rc(x)=y,pushup(x);
}
inline void makeroot(int x)
{
access(x);splay(x);reverse(x);
}
inline void split(int x,int y)
{
makeroot(x);access(y);splay(y);
}
inline void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
};
LCT T;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
inline void add(int u,int v)
{
u=T.find(u),v=T.find(v);
int x=found(u),y=found(v);
if(u==v)return ;
if(x!=y)
{
fa[x]=y,T.link(u,v);
return ;
}
T.split(u,v);T.dfs(T.ch[v][0],v);
}
int main()
{
read(n);read(m);
T.init();
for(register int i=1;i<=n;++i)fa[i]=i;
for(register int i=1;i<=m;++i)
{
read(side[i].u),read(side[i].v);
if(side[i].u>side[i].v)std::swap(side[i].u,side[i].v);
M[side[i].u][side[i].v]=i;
}
qs=1;
read(Q[qs].opt);
while(Q[qs].opt!=-1)
{
read(Q[qs].u);read(Q[qs].v);
if(Q[qs].u>Q[qs].v)std::swap(Q[qs].u,Q[qs].v);
if(Q[qs].opt==0)V[M[Q[qs].u][Q[qs].v]]=1;
qs++;
read(Q[qs].opt);
}
qs--;
for(register int i=1;i<=m;++i)
if(V[i])continue;
else add(side[i].u,side[i].v);
for(register int i=qs;i;--i)
{
ans[i]=-inf;
if(Q[i].opt==1)
{
int x=T.find(Q[i].u),y=T.find(Q[i].v);
T.split(x,y);
ans[i]=T.sum[y]-1;
}
if(Q[i].opt==0)add(Q[i].u,Q[i].v);
}
for(register int i=1;i<=qs;++i)
if(ans[i]!=-inf)write(ans[i],'\n');
return 0;
}

【刷题】BZOJ 1969 [Ahoi2005]LANE 航线规划的更多相关文章

  1. BZOJ 1969: [Ahoi2005]LANE 航线规划( 树链剖分 )

    首先我们要时光倒流, 倒着做, 变成加边操作维护关键边. 先随意搞出一颗树, 树上每条边都是关键边(因为是树, 去掉就不连通了)....然后加边(u, v)时, 路径(u, v)上的所有边都变成非关键 ...

  2. ●BZOJ 1969 [Ahoi2005]LANE 航线规划

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1969 题解: 线段树,树链剖分,反向考虑思路是很巧妙,但是感觉代码真的恶心.. 反着考虑,先 ...

  3. BZOJ 1969: [Ahoi2005]LANE 航线规划 [树链剖分 时间倒流]

    题意: 一张图,删除边,求两点之间的割边数量.保证任意时刻图连通 任求一棵生成树,只有树边可能是割边 时间倒流,加入一条边,就是两点路径上的边都不可能是割边,区间覆盖... 然后本题需要把边哈希一下, ...

  4. 【BZOJ 1969】 1969: [Ahoi2005]LANE 航线规划 (树链剖分+线段树)

    1969: [Ahoi2005]LANE 航线规划 Description 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星 ...

  5. 【BZOJ】1969: [Ahoi2005]LANE 航线规划

    题目链接: 传送~~ 题解:  老夫实在是码不动了…… 正着搞显然不好做,尝试倒着乱搞.先给被删除的边标记一个时间戳,先删除的时间戳大,同时维护询问时间戳,询问早的时间戳大.没被删除过的边时间戳都是0 ...

  6. 【BZOJ1969】[Ahoi2005]LANE 航线规划 离线+树链剖分+线段树

    [BZOJ1969][Ahoi2005]LANE 航线规划 Description 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由 ...

  7. [Ahoi2005]LANE 航线规划

    题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...

  8. BZOJ1969: [Ahoi2005]LANE 航线规划(LCT)

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 587  Solved: 259[Submit][Status][Discuss] Description ...

  9. cogs1538 [AHOI2005]LANE 航线规划

    套路题+裸题 首先肯定离线,倒过来处理,删边->加边 连边的时候,如果不连通就连,否则在这两个点的链上打个覆盖标记,查询的时候输出没被覆盖的路径条数 #include<cstdio> ...

随机推荐

  1. centos7搭建ANT+jmeter+jenkins接口测试自动化环境

    一.环境准备 因为用到了jmeter和apache-tomcat,centos7必须要有java环境,所以配置jdk和apache-tomcat什么的,就不多说了,自行操作 帮你们偷懒: ant下载地 ...

  2. 【Apache】 ab进行压力测试

    前言: ab是apache自带的压力测试工具,当安装完apache的时候,就可以在bin下面找到ab然后进行apache 负载压力测试. 工具: Apache ab压测工具 一.安装 (1) 下载 : ...

  3. ThreeJS实现波纹粒子效果

    今天我们来用ThreeJS的库实现一个波纹粒子效果,我们用到的ThreeJS的库有CanvasRenderer.js,OrbitControls.js,Projector.js,stats.min.j ...

  4. LinuxMint 18.3禁用ipv6

    编辑/etc/sysctl.conf文件,添加如下内容 net.ipv6.conf.all.disable_all = 1 保存后执行 sudo sysctl -p 即可生效

  5. log4cpp简单使用及踩到的坑

    log4cpp是log4j的一个扩展, C++开发者可用该库记录日志,可输出到终端,亦可保存到文件. 下面简单demo展示如何输出日志到输出终端. #include <iostream> ...

  6. 刨根问底KVO原理

    介绍 KVO( NSKeyValueObserving )是一种监测对象属性值变化的观察者模式机制.其特点是无需事先修改被观察者代码,利用 runtime 实现运行中修改某一实例达到目的,保证了未侵入 ...

  7. PHP.ini 能不能加载子配置文件 ?

    答案是不能,php这个地方用的是另一个方案解决的 编译的时候 用这个参数 --with-config-file-scan-dir指定一个目录 然后在这个目录里面加载ini   https://www. ...

  8. 第十四次ScrumMeeting博客

    第十四次ScrumMeeting博客 本次会议于12月3日(日)22时整在3公寓725房间召开,持续30分钟. 与会人员:刘畅.辛德泰.张安澜.方科栋. 1. 每个人的工作(有Issue的内容和链接) ...

  9. 利用Python编写Windows恶意代码!自娱自乐!勿用于非法用途!

    本文主要展示的是通过使用python和PyInstaller来构建恶意软件的一些poc. 利用Python编写Windows恶意代码!自娱自乐!勿用于非法用途!众所周知的,恶意软件如果影响到了他人的生 ...

  10. zookeeper客户端相关命令

    windows环境:    本机 直接 点机zkcli.cmd linux环境: 连接到zookeeper server ./zkCli.sh -server localhost:2181 help命 ...