[Codeforces526F]Pudding Monsters 分治
2 seconds
256 megabytes
In this problem you will meet the simplified model of game Pudding Monsters.
An important process in developing any game is creating levels. A game field in Pudding Monsters is an n × n rectangular grid, n of its cells contain monsters and some other cells contain game objects. The gameplay is about moving the monsters around the field. When two monsters are touching each other, they glue together into a single big one (as they are from pudding, remember?).
Statistics showed that the most interesting maps appear if initially each row and each column contains exactly one monster and the rest of map specifics is set up by the correct positioning of the other game objects.
A technique that's widely used to make the development process more efficient is reusing the available resources. For example, if there is a large n × n map, you can choose in it a smaller k × k square part, containing exactly k monsters and suggest it as a simplified version of the original map.
You wonder how many ways there are to choose in the initial map a k × k (1 ≤ k ≤ n) square fragment, containing exactly k pudding monsters. Calculate this number.
The first line contains a single integer n (1 ≤ n ≤ 3 × 105) — the size of the initial field.
Next n lines contain the coordinates of the cells initially containing monsters. The i-th of the next lines contains two numbers ri, ci(1 ≤ ri, ci ≤ n) — the row number and the column number of the cell that initially contains the i-th monster.
It is guaranteed that all ri are distinct numbers and all ci are distinct numbers.
Print the number of distinct square fragments of the original field that can form a new map.
5
1 1
4 3
3 2
2 4
5
10
题解:
考试的时候这道题真是吓到我了。。一开始以为是一道单纯的数数题,后来发现并不简单。。。
我们把这个棋盘模型抽象一下,这个棋盘由于
Statistics showed that the most interesting maps appear if initially each row and each column contains exactly one monster and the rest of map specifics is set up by the correct positioning of the other game objects.
也就是说,一行一列只有1个怪物,所以我们可以把它抽象为(化简为)一个1~n的排列
如果定义max(l,r)为区间[l,r]的最大值,min(l,r)为区间[l,r]的最小值,
我们需要的目标正方形,就对应这个排列中的某一个区间[l,r],并且满足max(l,r)-min(l,r)==r-l
接下来是关键的一步:我们考虑分治统计这些合法区间(似乎有一些类似cdq?)。
也就是说,如果设f(l,r)为区间[l,r]的合法区间数量,mi=(l+r)>>1
那么f(l,r)=f(l,mi)+f(mi+1,r)+『跨中点的合法解数量』
接下来我们考虑如何统计跨中点的合法解数量。
对于跨中点的合法解,其可能情况有4种:
1°max(l,r),min(l,r)均在左侧
2°max(l,r),min(l,r)均在右侧
3°max(l,r)在左侧,min(l,r)在右侧
4°max(l,r)在右侧,min(l,r)在左侧
简单来说,就是极值“在同侧”和“在异侧”两种情况
如果极值在同侧,我们可以枚举一个端点,并且计算出区间长度,从而得到另外一个端点,
最后判断是否合法,也即判断另外一侧是否有更大/小的极值
如果极值在异侧,我们依旧枚举其中一个端点,
(我们这里仅讨论最小值在左侧的情况,最小值在右侧的情况是与此对称的)
然后我们考虑上面的式子max(mi+1,r)-min(l,mi)==r-l
移项可得max(mi+1,r)-r==min(l,mi)-l
这样我们就可以枚举左端点,再用桶维护每个min(l,mi)-l对应的合法解个数(通过扫描右区间可得)
但要注意,min(l,mi)-l可能是负值,因此我们要给他加上一个较大值(比如N)
最后统计答案即可。代码见下:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=;
int n,A[N],cnt[N*+],maxl[N],minl[N],maxr[N],minr[N];
inline int max(int a,int b){return a>b?a:b;}
inline int min(int a,int b){return a<b?a:b;}
LL divide(int l,int r)
{
if(l==r)return ;
register int mi=(l+r)>>,i,j,k;
LL ret=divide(l,mi)+divide(mi+,r);
maxl[mi]=minl[mi]=A[mi],maxr[mi+]=minr[mi+]=A[mi+];
for(i=mi-;i>=l;--i)maxl[i]=max(maxl[i+],A[i]),minl[i]=min(minl[i+],A[i]);
for(i=mi+;i<=r;++i)maxr[i]=max(maxr[i-],A[i]),minr[i]=min(minr[i-],A[i]);
for(i=l;i<=mi;++i)
{
j=i+maxl[i]-minl[i];
if(j<=r&&j>mi&&maxr[j]<maxl[i]&&minr[j]>minl[i])ret++;
}
for(i=r;i>mi;--i)
{
j=i-(maxr[i]-minr[i]);
if(j>=l&&j<=mi&&maxl[j]<maxr[i]&&minl[j]>minr[i])ret++;
}
for(i=mi,j=mi+,k=mi;i>=l;--i)
{
while(j<=r&&maxr[j]<maxl[i])--cnt[maxr[j]-j+N],++j;
while(k<r&&minr[k+]>minl[i])++k,++cnt[maxr[k]-k+N];
ret+=max(cnt[minl[i]-i+N],);
}
for(i=mi+;i<=r;++i)cnt[maxr[i]-i+N]=;
for(i=mi,j=mi+,k=mi;i>=l;--i)
{
while(j<=r&&minr[j]>minl[i])--cnt[minr[j]+j],++j;
while(k<r&&maxr[k+]<maxl[i])++k,++cnt[minr[k]+k];
ret+=max(cnt[maxl[i]+i],);
}
for(i=mi+;i<=r;++i)cnt[minr[i]+i]=;
return ret;
}
int main()
{
scanf("%d",&n);int a,b;register int i,j;
for(i=;i<=n;++i)scanf("%d%d",&a,&b),A[a]=b;
printf("%I64d\n",divide(,n));
}
这道题的代码实现不是很难,但是这种模型的转换,以及分治的想法是很excellent的,真是长见识了。
我不经常用分治的方法解题……以后刷题的时候要多想想这方面的解法了。
[Codeforces526F]Pudding Monsters 分治的更多相关文章
- CodeForces526F:Pudding Monsters (分治)
In this problem you will meet the simplified model of game Pudding Monsters. An important process in ...
- 【CF526F】Pudding Monsters cdq分治
[CF526F]Pudding Monsters 题意:给你一个排列$p_i$,问你有对少个区间的值域段是连续的. $n\le 3\times 10^5$ 题解:bzoj3745 Norma 的弱化版 ...
- Codeforces 526F Pudding Monsters - CDQ分治 - 桶排序
In this problem you will meet the simplified model of game Pudding Monsters. An important process in ...
- CF526F Pudding Monsters
CF526F Pudding Monsters 题目大意:给出一个\(n* n\)的棋盘,其中有\(n\)个格子包含棋子. 每行每列恰有一个棋子. 求\(k*k\)的恰好包含\(k\)枚棋子的子矩形个 ...
- 「CF526F」 Pudding Monsters
CF526F Pudding Monsters 传送门 模型转换:对于一个 \(n\times n\) 的棋盘,若每行每列仅有一个棋子,令 \(a_x=y\),则 \(a\) 为一个排列. 转换成排列 ...
- Pudding Monsters CodeForces - 526F (分治, 双指针)
大意: n*n棋盘, n个点有怪兽, 求有多少边长为k的正方形内恰好有k只怪兽, 输出k=1,...,n时的答案和. 等价于给定n排列, 对于任意一个长为$k$的区间, 若最大值最小值的差恰好为k, ...
- [Codeforce526F]:Pudding Monsters(分治)
题目传送门 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上要迎来最终的压力测试——魔界入侵.唯一一个神一般存在的Administrator被消灭了,靠原本的 ...
- 奇袭 CodeForces 526F Pudding Monsters 题解
考场上没有认真审题,没有看到该题目的特殊之处: 保证每一行和每一列都恰有一只军队,即每一个Xi和每一个Yi都是不一样 的. 于是无论如何也想不到复杂度小于$O(n^3)$的算法, 只好打一个二维前缀和 ...
- 【CF526F】Pudding Monsters
题意: 给你一个排列pi,问你有对少个区间的值域段是连续的. n≤3e5 题解: bzoj3745
随机推荐
- 统计学习方法c++实现之七 提升方法--AdaBoost
提升方法--AdaBoost 前言 AdaBoost是最经典的提升方法,所谓的提升方法就是一系列弱分类器(分类效果只比随机预测好一点)经过组合提升最后的预测效果.而AdaBoost提升方法是在每次训练 ...
- Java的POI的封装与应用
Java对Excel表格的导出一直是对我有种可怕噩梦的东西,每次对要建立行与列,并一个一个放值,我是从心底拒绝的. 处于项目需求,需要导出表格,于是找到网上一版很好的开发, <不想用POI?几行 ...
- VMware vCenter Converter迁移Linux系统虚拟机
(一)简介VMware vCenter Converter Standalone,是一种用于将虚拟机和物理机转换为 VMware 虚拟机的可扩展解决方案.此外,还可以在 vCenter Server ...
- ssh软件及命令的使用
常用软件安装及使用目录 第1章 ssh常用用法小结 1.1 连接到远程主机: 命令格式 : ssh name@remoteserver 或者 ssh remoteserver -l name 说明:以 ...
- Alpha阶段项目展示博客
烫烫烫烫烫(hotcode5)团队 1. 团队成员的简介和个人博客地址 刘畅 博客园ID:森高Slontia 身份:PM 个人介绍: 弹丸粉 || 小说创作爱好者 || 撸猫狂魔(x || 生命的价值 ...
- linux命令系列 stat & touch
1. stat - display file or file system status stat命令主要用于显示文件或文件系统的状态,详细信息 事实上,stat命令显示的是文件的I节点信息.Linu ...
- 第十二周PSP
- PSP Daily新增功能说明书
1.选择输入类别时可以记录原来的输入,支持用户选择记录清空功能 2.添加“恢复最近”button,点击这个按钮可以跳出一个页面显示最近的excel记录,用户可以通过勾选相应的excel文件名,恢复选中 ...
- Data truncation: Truncated incorrect DOUBLE value:
在写sql查询语句queryRunner.update(connection,"update account set balance=? where name=?",account ...
- 论如何制做一个工程APP的测试内容
测试一般在软件开发过程中就已经开始进行了,测试越早.发现问题解决他的方案成本就越小.测试按照类型来区分可以划分为:单元测试,集成测试,系统测试.而OCUNIT是XCODE自带的单元测试工具.需要建立新 ...