【刷题】洛谷 P3872 [TJOI2010]电影迷
题目描述
小A是一个电影迷,他收集了上百部的电影,打算从中挑出若干部在假期看完。他根据自己的口味和网上的介绍,对每部电影X都打了一个分数vX,表示自己喜欢的程度。这个分数的范围在-1000至1000之间,越大表示越喜欢。小A每看一部电影X,他的体验值就会加上vX。
另外,因为某些电影是组成一个系列的,比如著名的《终结者》系列、《黑客帝国》系列等等,如果小A只看了前一部而没有看后一部的话,他就会觉得不是很爽。准确来讲,对于任意两部不同的电影X,Y,他们可能存在一个依赖值dXY,表示如果小A看了X但是没看Y,他的体验值就会减少dXY。(注意与观看的顺序无关,只要两部都看过,就不会减少体验值)
现在他要选出若干电影来看,使得得到的总的体验值最大。如果他无法得到正的体验值,就输出0。
输入输出格式
输入格式:
输入的第一行是两个整数:电影总数N和依赖关系数目M。第二行包含用空格隔开的N个数,表示对每部电影的打分。接下来M行,每行包含三个整数X, Y, dXY,表示一个依赖关系。每个有序对(X,Y)最多出现一次。(1 ≤ X,Y ≤ N)
输出格式:
输出一个整数,表示小A能得到的最大体验值。
输入输出样例
输入样例#1:
2 2
100 -50
1 2 49
2 1 10
输出样例#1:
51
说明
如果小A只看电影1,体验值为100-49 = 51。如果只看电影2,体验值为-50-10 = -60。如果两部都看,体验值为100+(-50) = 50。所以应该只看电影1。
数据规模与约定
对于20%的数据,1 ≤ N ≤ 15
对于100%的数据,1 ≤ N ≤ 100, -1000 ≤ vX ≤ 1000, 0 < dXY ≤ 1000
每个测试点时限1秒
题解
最大权闭合子图模板题
先强行看所有正权值的电影,即源点向所有正权值的点连边,边权为点的权值
强制不看负权值的电影,即所有负权值的点向汇点连边,边权为点的权值的相反数
中间的限制关系,两两连边,权值就为减少的值的绝对值
那么考虑割开整个图,与源点相连的就是要看的,与汇点相连的就是不看的
那么割的代价就是所有正权值的和需要减少的
我们要最后的答案最大,于是割要最小
跑最小割,用正权值的和减去代价即为答案
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,m,e=1,beg[MAXN],cur[MAXN],vis[MAXN],clk,s,t,ans,level[MAXN],to[MAXM<<1],nex[MAXM<<1],cap[MAXM<<1];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(cap[i],maxflow));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);read(m);
s=n+1,t=s+1;
for(register int i=1;i<=n;++i)
{
int x;read(x);
if(x>=0)ans+=x,insert(s,i,x);
else insert(i,t,-x);
}
for(register int i=1;i<=m;++i)
{
int u,v,k;read(u);read(v);read(k);
insert(u,v,k);
}
write(ans-Dinic(),'\n');
return 0;
}
【刷题】洛谷 P3872 [TJOI2010]电影迷的更多相关文章
- 2018.10.30 一题 洛谷4660/bzoj1168 [BalticOI 2008]手套——思路!问题转化与抽象!+单调栈
题目:https://www.luogu.org/problemnew/show/P4660 https://www.lydsy.com/JudgeOnline/problem.php?id=1168 ...
- 洛谷——P3871 [TJOI2010]中位数
P3871 [TJOI2010]中位数 一眼秒掉,这不是splay水题吗,套模板 #include<bits/stdc++.h> #define IL inline #define N 1 ...
- 洛谷 P3871 [TJOI2010]中位数 解题报告
P3871 [TJOI2010]中位数 题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前 ...
- AC日记——大爷的字符串题 洛谷 P3709
大爷的字符串题 思路: 莫队,需开O2,不开50: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 20000 ...
- 洛谷P3871 [TJOI2010]中位数(splay)
题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前序列的中位数 中位数是指将一个序列按照从 ...
- Mychael原创题 洛谷T23923 Mychaelの水题 【题解】
原题链接 题目大意: 有来自三个地区的人各a,b,c位,他们排成了一排.请问有多少种不同类型的排法,使得相邻的人都来自不同的地区 \(a,b,c<=200\) 答案取模 题解 弱弱的标程解法 设 ...
- 洛谷 P3879 [TJOI2010]阅读理解
P3879 [TJOI2010]阅读理解 题目描述 英语老师留了N篇阅读理解作业,但是每篇英文短文都有很多生词需要查字典,为了节约时间,现在要做个统计,算一算某些生词都在哪几篇短文中出现过. 输入输出 ...
- 洛谷 3871 [TJOI2010]中位数
[题解] 平衡树模板题,不过因为可以离线,所以有别的做法.把询问倒着做,变成删掉数字.求中位数,于是可以二分+树状数组. #include<cstdio> #include<cstr ...
- 洛谷3871 [TJOI2010]中位数 维护队列的中位数
题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前序列的中位数 中位数是指将一个序列按照从 ...
随机推荐
- Qt-网易云音乐界面实现-9 照片墙功能
最近车也买了,不过倒是没有想象的那么开心,车真的是想消耗品啊. 写这个专题了,本来是想好好的磨练一下自己,不过可能要在在理就GG了.腻味了. 还是先看下效果图吧 这个照片墙还差点东西,不过我个人认为需 ...
- 通俗理解BFS和DFS,附基本模板
1.BFS(宽度优先搜索):使用队列来保存未被检测的节点,按照宽度优先的顺序被访问和进出队列 打个比方:(1)类似于树的按层次遍历 (2)你的眼镜掉在了地上,你趴在地上,你总是先摸离你最近的地方,如果 ...
- AssetBundle粒度与分配策略
决定如何将项目内的资源分配到 AssetBundle 是不容易的.简单的规则都很有诱惑性,比如将所有对象都放置到他们自己的 AssetBundle 中或者将所有对象都放到一个 AssetBundle ...
- Unity_屏幕/Viewport/世界坐标的转换
Unity_屏幕/Viewport/世界/UI坐标的转换 参考: https://www.jianshu.com/p/b5b6ac9ab145 -- 世界.视口.屏幕坐标转换 https://docs ...
- Codeforces Round #515 (Div. 3) 解题报告(A~E)
题目链接:http://codeforces.com/contest/1066 1066 A. Vova and Train 题意:Vova想坐火车从1点到L点,在路上v的整数倍的点上分布着灯笼,而在 ...
- python-模拟掷骰子,两个筛子数据可视化
""" 作者:zxj 功能:模拟掷骰子,两个筛子数据可视化 版本:3.0 日期:19/3/24 """ import random impo ...
- React 之容器组件和展示组件相分离解密
Redux 的 React 绑定库包含了 容器组件和展示组件相分离 的开发思想.明智的做法是只在最顶层组件(如路由操作)里使用 Redux.其余内部组件仅仅是展示性的,所有数据都通过 props 传入 ...
- 第39次Scrum会议(12/5)【欢迎来怼】
一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/12/5 11:35~11:57,总计22min.地点:东北师 ...
- spring中的@component
@component (把普通pojo实例化到spring容器中,相当于配置文件中的 <bean id="" class=""/>) 泛指各种组件, ...
- Scrum Meeting 10 -2014.11.16
开始进入大项目的整合阶段,平时和其他两个小组交流较少,整合难度还是存在的. 在具体整合前,让开发人员添加了些必要的注释,优化代码结构,方便阅读. Member Today’s task Next ta ...