洛谷P1286 两数之和
这个题。。 刚开始没看见输入若干行,所以有的点就。。
令 m = n * (n - 1) / 2
已知 s = {s (1), s(2), ..., s(m)},
s(i) <= s(i+1)
那么
最小是 s1=x1+x2,
其次是 s2=x1+x3,
则有 sp=x2+x3
联立解得:(s1 + s2 + sp) / 2 - sp = x1
s[]=s-{x1+x2, x1+x3, x2+x3}
也就是将s[]中的求得的点打上标记
x1 + x4 = min{s},求出x4
s = s - {x1 + x4, x2 + x4, x3 + x4}
也是将能求出的点打上标记
x1+x5=min{s}... (以此类推)
另外需要判断常数列:
1.如果是奇数列,就无解,输出Impossible
2.如果是偶数列,就输出n个,s[1] / 2。
处理的话用了一下二分,找第一个不小于k的位置
我没用搜索,通过上面的解析,放到循环中就好了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 310;
const int maxm = maxn * (maxn-1) / 2;
int n,m,x[maxn],s[maxm];
int cnt,ans[2][maxn];
bool vis[maxm];
int flag=1;
int erf(int k){
//找不小于k的最小值
int l = 0 , r = m + 1 , ans , mid;
while(r > l + 1){
mid = (l + r) / 2;
if(s[mid] < k) ans = l = mid;
else r = mid;
}
return ans + 1;
}
void find(int p){
memset(vis,false,sizeof(vis));
vis[1] = vis[2] = vis[p] = true;
x[1] = (s[1] + s[2] + s[p]) / 2 - s[p];
x[2] = s[1] - x[1];
x[3] = s[2] - x[1];
int next = 3;
for(int i=4;i<=n;i++){
while(next < m && vis[next])
next++;
//if(next > m) return;
x[i] = s[next] - x[1];
vis[next] = true;
for(int j=2;j<i;j++){
if(x[j] > x[i]) return;
int sum = x[i] + x[j];
p = erf(sum);
if(s[p] != sum) return;
bool found = false;
for(int k=p;p<=m && s[k] == s[p];k++){
if(!vis[k]){
found = true;
vis[k] = true;
break;
}
}
if(!found) return;
}
}
for(int i=1;i<=n;i++)
ans[1][i] = x[i];
cnt++;
}
int main(){
while(scanf("%d",&n) == 1){
memset(ans,0,sizeof(ans));
memset(x,0,sizeof(x));
flag=1;cnt=0;
m = n * (n - 1) / 2;
for(int i=1;i<=m;i++){
scanf("%d",&s[i]);
if(i>1){
if(s[i]==s[i-1]&&flag==1) flag=1;
else flag=0;
}
}
if(flag){
//printf("1\n");
if(s[1] % 2 == 0){
for(int i=1;i<=n;i++)
printf("%d ",s[i] / 2);
printf("\n");
}
else {
printf("Impossible\n");
}
}
else{
sort(s + 1,s + m + 1 );
for(int i=3;i<=m;i++){
if((s[i] != s[i-1] || i==3) && (s[1] + s[2] + s[i]) % 2 == 0)
find(i);
if(cnt > 0)
break;
}
if(cnt == 0) {
printf("Impossible\n");
}
else {
for(int j=1;j<=n;j++)
printf("%d ",ans[1][j]);
printf("\n");
}
}
}
return 0;
}
洛谷P1286 两数之和的更多相关文章
- 给定数组A,大小为n,现给定数X,判断A中是否存在两数之和等于X
题目:给定数组A,大小为n,现给定数X,判断A中是否存在两数之和等于X 思路一: 1,先采用归并排序对这个数组排序, 2,然后寻找相邻<k,i>的两数之和sum,找到恰好sum>x的 ...
- LeetCode 170. Two Sum III - Data structure design (两数之和之三 - 数据结构设计)$
Design and implement a TwoSum class. It should support the following operations: add and find. add - ...
- LeetCode 371. Sum of Two Integers (两数之和)
Calculate the sum of two integers a and b, but you are not allowed to use the operator + and -. Exam ...
- LeetCode 167. Two Sum II - Input array is sorted (两数之和之二 - 输入的是有序数组)
Given an array of integers that is already sorted in ascending order, find two numbers such that the ...
- [LeetCode] Two Sum IV - Input is a BST 两数之和之四 - 输入是二叉搜索树
Given a Binary Search Tree and a target number, return true if there exist two elements in the BST s ...
- [LeetCode] 1. Two Sum 两数之和
Part 1. 题目描述 (easy) Given an array of integers, return indices of the two numbers such that they add ...
- Leetcode(一)两数之和
1.两数之和 题目要求: 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但是,你不能重 ...
- 南大算法设计与分析课程OJ答案代码(1)中位数附近2k+1个数、任意两数之和是否等于给定数
问题1 用来测试的,就不说了 问题2:中位数附近2k+1个数 给出一串整型数 a1,a2,...,an 以及一个较小的常数 k,找出这串数的中位数 m 和最接近 m 的小于等于 m 的 k 个数,以及 ...
- 两数之和,两数相加(leetcode)
我们都知道算法是程序员成长重要的一环,怎么才能提高算法呢, 出来在网上看视频之外,动手练习是非常重要的.leetcode 就是一个非常好的锻炼平台. 1. 两数之和,在 leetcode 里面是属于 ...
随机推荐
- Python完成RF测试用例
Robot Framework 框架是基于 Python 语言开发的,所以,它本质上是 Python 的一个库. from robot.api import TestSuite from robot. ...
- Linux可执行文件后缀问题
一般来说,可执行文件没有扩展名. Linux不根据扩展名判断文件类型,而是根据文件的内容来判断.所以扩展名的作用是帮助人来识别文件,对于Linux系统本身来说没有什么用处. .sh结尾表示是shell ...
- K8S之Secret
目录 简介 创建secret 1.加密用户名密码 2.加密证书文件 使用secret 1.使用volume挂载方式 2.将secret用于env 简介 secret顾名思义,用于存储一些敏感的需要加密 ...
- 利用Sentinel实现Redis主从切换
利用Sentinel(哨兵)实现Redis集群的故障自主切换 首先部署redis主从集群,主要安装过程: cd redis make make install 主要看配置文件: master: bin ...
- 「Vue」v-on修饰符
修饰符stop阻止冒泡 --> <!-- <div id="myvue" @click="divc" class="d1" ...
- JavaScript中的arguments详解
1. arguments arguments不是真正的数组,它是一个实参对象,每个实参对象都包含以数字为索引的一组元素以及length属性. (function () { console.log(ar ...
- 利用 Dijit 组件框架打造丰富的用户界面
原文出处:Joe Lennon 从头开始学习 Dojo,第 3 部分 利用 Dijit 组件框架打造丰富的用户界面 Dijit 是什么? Dijit 是 Dojo 工具包的富组件用户界面库.这些组件完 ...
- webapi框架搭建-安全机制(一)
本系列博客链接:webapi框架搭建系列博客 前言 webapi接口是开放给外部使用的,包括接口的地址,传参的规范,还有返回结果的说明.正因为接口的开放性,使得接口的安全很重要.试想一下,用抓包工具( ...
- MinGW安装设置
From:http://www.cnblogs.com/killerlegend/p/3746504.html Author:KillerLegend Date:2014.5.22 不得不吐槽一下学校 ...
- bzoj千题计划158:bzoj2406: 矩阵(有源汇上下界可行流)
http://www.lydsy.com/JudgeOnline/problem.php?id=2406 设矩阵C=A-B 最小化 C 一行或一列和的最大值 整体考虑一行或者一列的和 二分最大值 这样 ...