redis队列及多线程应用
由于xxx平台上自己的博客已经很久没更新了,一直以来都是用的印象笔记来做工作中知识的积累存根,不知不觉印象笔记里已经有了四、五百遍文章。为了从新开始能与广大攻城狮共同提高技术能力与水平,随决心另起炉灶在新的博客与大家分享
经过一段时间项目的沉淀之后,对实际应用中的多线程开发及队列使用产生了深厚的兴趣,也将<<java并发编程实战>>仔细的阅读了两三遍,也看了很多并发编程的实践项目,也有了深刻的理解与在实践中合理应用队列、多线程开发的应用场景
1、真实应用场景描述:
由于一段时间以来要针对公司整个电商平台包括官网、移动端所有的交易数据进行统计,统计指标包括:pv、uv、实付金额、转化率、毛利率等等,按照各种不同的维度来统计计算出当前交易系统的各个指标的数据,但要求该项目是独立的,没有任务其它资源的协助及接品提供。经过一番xxxx思考讨论之后。业务上决定用以下解决方案:
A: 用一个定时服务每隔10秒去别的系统数据库抓取上一次查询时间以来新确认的订单(这种订单表示已经支付完在或者客户已经审核确认了),然后将这些订单的唯一编号放入redis队列。
B: 由于用到了队列,根据经验自然而然的想到了 启动单独的线程去redis队列中不断获取要统计处理的订单编号,然后将获取到的订单编号放入线程池中进行订单的统计任务处理。
开发实现:
FetchConfirmOrdersFromErpJob.java
/**
* 1、从redis中获取上次查询的时间戳
* 2、将当前时间戳放入到redis中,以便 下次按这个时间查询
* 3、去erp订单表查询confirm_time>=上次查询的时间的订单,放入队列中
*/
@Scheduled(cron = "0/30 * * * * ?")
public void start(){
logger.info("FetchConfirmOrdersFromErpJob start................."+ new Date());
StopWatch watch=new StopWatch();
watch.start();
//上次查询的时间
String preQueryTimeStr=this.readRedisService.get(Constans.CACHE_PREQUERYORDERTIME); Date now=new Date();
if(StringUtils.isBlank(preQueryTimeStr)){
preQueryTimeStr=DateFormatUtils.format(DateUtils.addHours(now, -1), Constans.DATEFORMAT_PATTERN_YYYYMMDDHHMMSS);//第一次查询之前一个小时的订单
// preQueryTimeStr="2015-05-07 10:00:00";//本地测试的时候使用
}
//设置当前时间为上次查询的时间
this.writeRedisService.set(Constans.CACHE_PREQUERYORDERTIME, DateFormatUtils.format(now, Constans.DATEFORMAT_PATTERN_YYYYMMDDHHMMSS)); List<Map<String, Object>> confirmOrderIds = this.erpOrderService.selectOrderIdbyConfirmtime(preQueryTimeStr);
if(confirmOrderIds==null){
logger.info("query confirmOrderIds is null,without order data need dealth..........");
return;
}
for (Map<String, Object> map : confirmOrderIds) {
//将订单编号放入队列中
this.writeRedisService.lpush(Constans.CACHE_ORDERIDS, map.get("channel_orderid").toString());
logger.info("=======lpush orderid:"+map.get("channel_orderid").toString());
} watch.stop();
logger.info("FetchConfirmOrdersFromErpJob end................."+ new Date()+" total cost time:"+watch.getTime()+" dealth data count:"+confirmOrderIds.size());
}
OrderCalculate.java 队列获取订单线程
public class OrderCalculate { private static final Log logger = LogFactory.getLog(OrderCalculate.class); @Autowired
private static WriteRedisService writeRedisService; private static ExecutorService threadPool=Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors()*4
,new TjThreadFactory("CalculateAmount"));
static{
Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
@Override
public void run() {
QueuePop.stop();
threadPool.shutdown();
}
}));
} public void init(){
if(writeRedisService==null){
writeRedisService=SpringContext.getBean(WriteRedisService.class);
}
new Thread(new QueuePop(),"OrderIdQueuePop").start();//由于是用redis做的队列,所以只要使用一个线程从队列里拿就ok
} static class QueuePop implements Runnable{ volatile static boolean stop=false; @Override
public void run() {
while(!stop){
//不断循环从队列里取出订单id
String orderId=null;
try {
orderId = writeRedisService.rpop(Constans.CACHE_ORDERIDS);
if(orderId!=null){
logger.info("pop orderId:"+orderId);
//将获取的订单编号交给订单统计任务处理线程处理
threadPool.submit(new CalculateAmount(Integer.parseInt(orderId),new Date()));
}
} catch (Exception e1) {
logger.error("",e1);
}
//根据上线后的业务反馈来确定是否改成wait/notify策略来及时处理确认的订单
try {
Thread.sleep(10);
} catch (InterruptedException e) {
logger.error("",e);
// Thread.currentThread().interrupt();
//stop=true;//线程被打算继续执行,不应该被关闭,保证该线程永远不会死掉
}
}
} public static void stop(){
stop=true;
} } }
CalculateAmoiunt.java 订单任务处理
public class CalculateAmount implements Runnable {
private static final Log logger = LogFactory.getLog(CalculateAmount.class);
private int orderId;
private Date now;//确认时间 这个时间有一定的延迟,基本可以忽略,如果没什么用
private OrderService orderServices;
private OrdHaveProductService ordHaveProductService;
private OrdPayByCashbackService ordPayByCashbackService;
private OrdPayByCouponService ordPayByCouponService;
private OrdPayByGiftCardService ordPayByGiftCardService;
private StatisticsService statisticsService;
private WriteRedisService writeRedisService;
private ReadRedisService readRedisService;
private ErpOrderGoodsService erpOrderGoodsService;
private ErpOrderService erpOrderService; public CalculateAmount(int orderId,Date now) {
super();
this.orderId = orderId;
this.now=now;
orderServices=SpringContext.getBean(OrderService.class);
ordHaveProductService=SpringContext.getBean(OrdHaveProductService.class);
ordPayByCashbackService=SpringContext.getBean(OrdPayByCashbackService.class);
ordPayByCouponService=SpringContext.getBean(OrdPayByCouponService.class);
ordPayByGiftCardService=SpringContext.getBean(OrdPayByGiftCardService.class);
statisticsService=SpringContext.getBean(StatisticsService.class);
writeRedisService=SpringContext.getBean(WriteRedisService.class);
readRedisService=SpringContext.getBean(ReadRedisService.class);
erpOrderGoodsService=SpringContext.getBean(ErpOrderGoodsService.class);
erpOrderService=SpringContext.getBean(ErpOrderService.class);
} @Override
public void run() {
logger.info("CalculateAmount task run start........orderId:"+orderId);
StopWatch watch=new StopWatch();
watch.start();
/**
* 取出订单相关的所有数据同步到统计的库中
*/
//TODO 考虑要不要将下面所有操作放到一个事务里面
List<Map<String, Object>> orders = this.orderServices.selectOrderById(orderId);
if(orders!=null&&orders.size()>0){
Map<String, Object> order = orders.get(0); String orderSN=U.nvl(order.get("OrderSN"));//订单编号
Integer userId=U.nvlInt(order.get("usr_UserID"),null);//用户d
Integer status=U.nvlInt(order.get("Status"),null);//状态
Date createTime=now;//(Date)order.get("CreateTime");//创建时间
Date modifyTime=now;//(Date)order.get("ModifyTime");// 更新时间
BigDecimal discountPrice=U.nvlDecimal(order.get("DiscountPrice"),null);//优惠总额 满减金额
BigDecimal payPrice=U.nvlDecimal(order.get("PayPrice"), null);//实付金额
BigDecimal totalPrice=U.nvlDecimal(order.get("TotalPrice"), null);//总金额 //从erp里查询出订单的确认时间
int dbConfirmTime=0;
try {
dbConfirmTime = this.erpOrderService.selectConfirmTimeByOrderId(orderId);
} catch (Exception e2) {
logger.error("",e2);
}
Date ct=new Date(dbConfirmTime*1000L); int[] dates=U.getYearMonthDayHour(ct);//
if(modifyTime!=null){
dates=U.getYearMonthDayHour(modifyTime);//
}
int year=dates[0];//年
int month=dates[1];//月
int day=dates[2];//日
int hour=dates[3];//小时 String ordersId=orderId+"";//生成订单id //查询订单的来源和搜索引擎关键字
String source="";
String seKeyWords="";
List<OrdersData> orderDataList=this.statisticsService.selectOrdersDataByOrdersId(orderSN);
if(orderDataList!=null&&!orderDataList.isEmpty()){
OrdersData ordersData = orderDataList.get(0);
source=ordersData.getSource();
seKeyWords=ordersData.getSeKeyWords();
} //TODO 将订单入库
ArrayList<RelOrders> relOrdersList = Lists.newArrayList();
RelOrders relOrders=new RelOrders(orderSN,userId+"",Byte.valueOf(status+""),source,seKeyWords,IsCal.未计算.getFlag(),(byte)U.getSimpleYearByYear(year),(byte)month,(byte)day,(byte)hour,ct,createTime,modifyTime);
relOrdersList.add(relOrders); try {
relOrders.setConfirmTime(ct);
//查询RelOrders是否存在
RelOrders dbOrders=this.statisticsService.selectByPrimaryKey(orderSN);
if(dbOrders!=null){
//更新
dbOrders.setStatus(Byte.valueOf(status+""));
dbOrders.setConfirmTime(ct);
dbOrders.setModifyTime(modifyTime);
this.statisticsService.updateByPrimaryKeySelective(dbOrders);
return;
}else{
Integer relResult=this.statisticsService.insertRelOrdersBatch(relOrdersList);
}
} catch (Exception e) {
logger.error("insertRelOrdersBatch error",e);
}
/**
* 查这个订单的返现、优惠券、礼品卡 的金额
*/
List<Map<String, Object>> cashs = this.ordPayByCashbackService.selectDecutionPriceByOrderId(orderId);
List<Map<String, Object>> coupons = this.ordPayByCouponService.selectDecutionPriceByOrderId(orderId); BigDecimal cashAmount=U.getValueByKey(cashs, "DeductionPrice", BigDecimal.class, BigDecimal.ZERO);//返现金额
BigDecimal couponAmont=U.getValueByKey(coupons, "DeductionPrice", BigDecimal.class, BigDecimal.ZERO);//红包金额
/**
* 查询出这个订单的所有商品
*/
List<Map<String, Object>> products=null;
Map<String,Object> productToKeyWordMap=Maps.newHashMap();
try {
products = this.ordHaveProductService.selectByOrderId(orderId);
List<OrdersItemData> ordersItemDataList=this.statisticsService.selectOrdersItemDataByOrdersId(orderSN);
if(ordersItemDataList!=null){
for (OrdersItemData ordersItemData : ordersItemDataList) {
productToKeyWordMap.put(ordersItemData.getItemId(), ordersItemData.getKeyWords());
}
}
} catch (Exception e1) {
logger.error("",e1);
}
if(products!=null){
ArrayList<RelOrdersItem> relOrdersItemList = Lists.newArrayList();
for (Map<String, Object> product : products) {
Integer productId=U.nvlInt(product.get("pro_ProductID"), null);//商品Id
Integer buyNo=U.nvlInt(product.get("BuyNo"), 0);//购买数量
String SN=U.nvl(product.get("SN"),"");
BigDecimal buyPrice=U.nvlDecimal(product.get("BuyPrice"), BigDecimal.ZERO);//购买价格
BigDecimal buyTotalPrice=U.nvlDecimal(product.get("BuyTotalPrice"), null);//购买总价格
BigDecimal productPayPrice=U.nvlDecimal(product.get("PayPrice"), null);//单品实付金额 BigDecimal cost=null;//商品成本 TODO 调别人的接口
BigDecimal realtimeAmount=null;//实付金额 BigDecimal pdCashAmount=BigDecimal.ZERO;//每个商品的返现
BigDecimal pdcouponAmont=BigDecimal.ZERO;//每个商品的优惠券 //商品价格所占订单比例
if(buyTotalPrice!=null&&totalPrice!=null&&totalPrice.doubleValue()!=0){
pdCashAmount=buyTotalPrice.divide(totalPrice,8,BigDecimal.ROUND_HALF_UP).multiply(cashAmount).setScale(2,BigDecimal.ROUND_HALF_UP);
pdcouponAmont=buyTotalPrice.divide(totalPrice,8,BigDecimal.ROUND_HALF_UP).multiply(couponAmont).setScale(2,BigDecimal.ROUND_HALF_UP);
discountPrice=buyTotalPrice.divide(totalPrice,8,BigDecimal.ROUND_HALF_UP).multiply(discountPrice).setScale(2,BigDecimal.ROUND_HALF_UP);
} realtimeAmount=buyTotalPrice.subtract((pdCashAmount.add(pdcouponAmont).add(discountPrice))).setScale(2,BigDecimal.ROUND_HALF_UP); RelOrdersItem item=new RelOrdersItem(U.randomUUID(),orderSN,productId,SN,buyNo,realtimeAmount,U.nvl(productToKeyWordMap.get(productId))); relOrdersItemList.add(item); //如果确认时间属于同一天的话,将商品实付金额放入到redis排行榜中
if((status==1||status==5||status==6||status==7||status==11)&&DateUtils.isSameDay(new Date(), ct)){
//如果订单的状态是这几种,刚将该商品加入到实付金额的排行 榜中
dates=U.getYearMonthDayHour(ct);//
int days=dates[2];
//某一个商品某一天的实付金额
BigDecimal itemRelAmount=BigDecimal.ZERO;
//从redis里取出这个商品的实付金额,然后累加
String itemRelAmountStr=readRedisService.get(Constans.CACHE_PERITEMRELAMOUNTSS_KEY_PREFIX+productId+Constans.CACHE_KEY_SEPARATOR+days);
if(StringUtils.isNotBlank(itemRelAmountStr)){
itemRelAmount=new BigDecimal(itemRelAmountStr);
}
realtimeAmount=itemRelAmount.add(realtimeAmount);
writeRedisService.set(Constans.CACHE_PERITEMRELAMOUNTSS_KEY_PREFIX+productId+Constans.CACHE_KEY_SEPARATOR+days, realtimeAmount.toPlainString());
writeRedisService.lpush(Constans.CACHE_DELKEYS_KEY_PRDFIX+days, Constans.CACHE_PERITEMRELAMOUNTSS_KEY_PREFIX+productId+Constans.CACHE_KEY_SEPARATOR+days);
writeRedisService.zadd(Constans.CACHE_ITEMREALAMOUNTSS_KEY+days, realtimeAmount.doubleValue(), productId+"");
//确认的销量
Long itemCount= writeRedisService.incrBy(Constans.CACHE_ITEMSALES_KEY_PRDFIX+productId+Constans.CACHE_KEY_SEPARATOR+days,buyNo);
writeRedisService.zadd(Constans.CACHE_ITEMSALES_SS_KEY_PRDFIX+days, itemCount, productId+""); String itemType="";
Map<String, String> pMap = this.readRedisService.hmget(Constans.CACHE_PRODUCT_KEY+productId);
itemType=pMap.get("categoryId");
if(StringUtils.isNotBlank(itemType)){
if(ProductCategory.isGuanBai(itemType)){
//如果是白酒 官白的访客数排行
this.writeRedisService.zadd(Constans.CACHE_ITEMREALAMOUNTWHITESS_KEY+days, realtimeAmount.doubleValue(), productId+"");//
//确认的销量排行
this.writeRedisService.zadd(Constans.CACHE_ITEMSALESWHITE_SS_KEY_PRDFIX+days, itemCount, productId+"");//
}else if(ProductCategory.isGuanHong(itemType)){
//官红的访客数排行
this.writeRedisService.zadd(Constans.CACHE_ITEMREALAMOUNTREDSS_KEY+days, realtimeAmount.doubleValue(), productId+"");//
//确认的销量排行
this.writeRedisService.zadd(Constans.CACHE_ITEMSALESRED_SS_KEY_PRDFIX+days, itemCount, productId+"");//
}
} //某一个商品的销量加入删除列表
writeRedisService.lpush(Constans.CACHE_DELKEYS_KEY_PRDFIX+days, Constans.CACHE_ITEMSALES_KEY_PRDFIX+productId+Constans.CACHE_KEY_SEPARATOR+days);
}
}
try {
//TODO 将订单商品明细入库
this.statisticsService.insertRelOrdersItemBatch(relOrdersItemList);
//再将订单的状态改为已计算
this.statisticsService.updateIsCal(orderSN,IsCal.已计算.getFlag());//将是否计算改成已计算
//该订单的所有商品的成本同步到现在的库中。
this.calOrderProductCostSync(orderId,orderSN,products);
} catch (Exception e) {
logger.error("insertRelOrdersItemBatch or updateIsCal error",e);
}
}
}
watch.stop();
logger.info("CalculateAmount task run end........total cost time:"+watch.getTime()+" orderId:"+orderId);
} private void calOrderProductCostSync(int orderId,String orderSN,List<Map<String, Object>> products){
List<Map<String, Object>> ordersList = this.erpOrderGoodsService.selectProductCostByOrderSN(orderSN);
if(ordersList==null||ordersList.isEmpty()){
logger.error("according orderId to query some data from erp return is null.........");
return;
}
Map<String, String> itemIdToItemSnMap = U.convertToMapByList(products, "pro_ProductID", "SN"); List<RelItemCosts> list=Lists.newArrayList();
for (Map<String, Object> map : ordersList) {
RelItemCosts itemCost=new RelItemCosts();
if(map==null){
continue;
}
Integer itemId=U.nvlInt(map.get("goods_id"),-99);
BigDecimal costs=U.nvlDecimal(map.get("Dynamic_price"), BigDecimal.ZERO);
itemCost.setId(U.randomUUID());
itemCost.setOrdersId(orderId+"");
itemCost.setOrdersNo(orderSN);
itemCost.setItemId(itemId);
itemCost.setItemNo(itemIdToItemSnMap.get(itemId+""));
itemCost.setCosts(costs);
itemCost.setCreateTime(new Date());
itemCost.setModifyTime(new Date());
list.add(itemCost);
} this.statisticsService.insertRelItemCostsBatch(list); } }
注意:
1、redis2.6版本使用lpush、rpop出列的时候会丢失数据。换成2.8及以上的版本运行正常。
2、由于应用会部署到多个结点,所以无法直接采用java的BlockingQueue阻塞队列,帮采用redis提供的队列支持。
3、如果要做到统计的绝对实时,最好采用大数据的实时计算的解决方案:kafka+storm 来实现
以上为队列结合线程的实践案例,供大家一起探讨。
转载请注明出处 ,请大家尊重作者的劳动成果。
redis队列及多线程应用的更多相关文章
- Redis 6.0 多线程重磅发布!!!
Redis 6.0在5.2号这个美好的日子里悄无声息的发布了,这次发布在IT圈犹如一颗惊雷一般,因为这是redis最大的一次改版,首次加入了多线程. 作者Antirez在RC1版本发布时在他的博客写下 ...
- [bigdata] 使用Redis队列来实现与机器无关的Job提交与执行 (python实现)
用例场景: 定时从远程多台机器上下载文件存入HDFS中.一开始采用shell 一对一的方式实现,但对于由于网络或者其他原因造成下载失败的任务无法进行重试,且如果某台agent机器down机,将导致它对 ...
- 我心中的核心组件~MSMQ与Redis队列
回到目录 这个文章其实是我心中的核心组件的第七回,确实在时间上有些滞后了,但内容并不滞后!本文MSMQ只是个引题,我确实不太想说它,它是微软自己集成的一套消息队列,寄宿在Window服务里,稳定性十在 ...
- c#之Redis队列在邮件提醒中的应用
场景 有这样一个场景,一个邮件提醒的windows服务,获取所有开启邮件提醒的用户,循环获取这些用户的邮件,发送一条服务号消息.但问题来了,用户比较少的情况下,轮询一遍时间还能忍受,如果用户多了,那用 ...
- c#之Redis队列
摘要 这两天一直在考虑redis队列:一个生产者,多个消费者的情况,这里弄了一个demo进行测试. 一个例子 关于如何引用Redisclient 可以参考之前的这篇文章:c#之Redis实践list, ...
- redis队列的实现
redis中文官网:http://www.redis.cn/ 关于redis队列的实现方式有两种: 1.生产者消费者模式. 2.发布者订阅者模式. 详解: 1.生产者消费者模式. 普通版本: 比如一个 ...
- (3)redis队列功能
Redis队列功能介绍 List 常用命令: Blpop删除,并获得该列表中的第一元素,或阻塞,直到有一个可用 Brpop删除,并获得该列表中的最后一个元素,或阻塞,直到有一个可用 Brpoplpus ...
- 转载:【高并发简单解决方案 | 靠谱崔小拽 】redis队列缓存 + mysql 批量入库 + php离线整合
需求背景:有个调用统计日志存储和统计需求,要求存储到mysql中:存储数据高峰能达到日均千万,瓶颈在于直接入库并发太高,可能会把mysql干垮. 问题分析 思考:应用网站架构的衍化过程中,应用最新的框 ...
- redis 队列缓存 + mysql 批量入库 + php 离线整合
问题分析 思考:应用网站架构的衍化过程中,应用最新的框架和工具技术固然是最优选择:但是,如果能在现有的框架的基础上提出简单可依赖的解决方案,未尝不是一种提升自我的尝试. 解决: 问题一:要求日志最好入 ...
随机推荐
- 认识javascript中的作用域和上下文
javascript中的作用域(scope)和上下文(context)是这门语言的独到之处,这部分归功于他们带来的灵活性.每个函数有不同的变量上下文和作用域.这些概念是javascript中一些强大的 ...
- 关于myBatis的问题There is no getter for property named 'USER_NAME' in 'class com.bky.model.实例类'
现在流行的 ssm(spring + struts2 + myBatis) 持久层的mybatis是需要配置映射器的,找了个demo连接的数据库是MySQL 于是就修改了一下弄成了连接Oracle的 ...
- C#和C++中char类型的区别
对于char,这个字符类型.我们一般都认为就是一个字节.今天在仔细比较发现,C#的char和C++的char是有区别的. 1.首先来看C#中char占多大空间 using System;using S ...
- java转换emoji表情
/** * @Description 将字符串中的emoji表情转换成可以在utf-8字符集数据库中保存的格式(表情占4个字节,需要utf8mb4字符集) * @param str * 待转换字符串 ...
- DevExpress RichEditControl 上下翻页功能 z
/// <summary> /// 翻页 /// </summary> /// <param name="isPre"></param&g ...
- pytest文档16-用例a失败,跳过测试用例b和c并标记失败xfail
前言 当用例a失败的时候,如果用例b和用例c都是依赖于第一个用例的结果,那可以直接跳过用例b和c的测试,直接给他标记失败xfail 用到的场景,登录是第一个用例,登录之后的操作b是第二个用例,登录之后 ...
- facebook开源项目集合
Facebook的开源大手笔 1. 开源Facebook平台代码 Facebook在2008年选择将该平台上的重要部分的代码和应用工具开源.Facebook称,平台已经基本发展成熟,此举可以让开发 ...
- VirtualBox 快捷键
VirtualBox 的 Host 键是哪一个? 默认的 Host = Right Ctrl 组合键,意思是键盘上两个 “Ctrl”中右边的那个.键盘上是没有 “Right”这个键的,刚开始不明白,后 ...
- memcpy实现
typedef unsigned int size_t; void * my_memcpy ( void *dest, const void *src, size_t num ) { void* re ...
- C语言变量的类型和存储位置
. C语言变量主要分为全局变量.静态全局变量.局部变量.静态局部变量和寄存器变量.其中静态变量用static关键字进行修饰.程序所占用的内存可以分为以下几个部分: ()代码段-存放程序代码,只读的,不 ...