题目链接:

acm.hdu.edu.cn/showproblem.php?pid=1025

Constructing Roads In JGShining's Kingdom

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 28755    Accepted Submission(s): 8149

Problem Description
JGShining's kingdom consists of 2n(n is no more than 500,000) small cities which are located in two parallel lines.

Half of these cities are rich in resource (we call them rich cities) while the others are short of resource (we call them poor cities). Each poor city is short of exactly one kind of resource and also each rich city is rich in exactly one kind of resource. You may assume no two poor cities are short of one same kind of resource and no two rich cities are rich in one same kind of resource.

With the development of industry, poor cities wanna import resource from rich ones. The roads existed are so small that they're unable to ensure the heavy trucks, so new roads should be built. The poor cities strongly BS each other, so are the rich ones. Poor cities don't wanna build a road with other poor ones, and rich ones also can't abide sharing an end of road with other rich ones. Because of economic benefit, any rich city will be willing to export resource to any poor one.

Rich citis marked from 1 to n are located in Line I and poor ones marked from 1 to n are located in Line II.

The location of Rich City 1 is on the left of all other cities, Rich City 2 is on the left of all other cities excluding Rich City 1, Rich City 3 is on the right of Rich City 1 and Rich City 2 but on the left of all other cities ... And so as the poor ones.

But as you know, two crossed roads may cause a lot of traffic accident so JGShining has established a law to forbid constructing crossed roads.

For example, the roads in Figure I are forbidden.

In order to build as many roads as possible, the young and handsome king of the kingdom - JGShining needs your help, please help him. ^_^

 
Input
Each test case will begin with a line containing an integer n(1 ≤ n ≤ 500,000). Then n lines follow. Each line contains two integers p and r which represents that Poor City p needs to import resources from Rich City r. Process to the end of file.
 
Output
For each test case, output the result in the form of sample.
You should tell JGShining what's the maximal number of road(s) can be built.
 
Sample Input
2
1 2
2 1
3
1 2
2 3
3 1
 
Sample Output
Case 1:
My king, at most 1 road can be built.
 
Case 2:
My king, at most 2 roads can be built.

Hint

Huge input, scanf is recommended.

 

题目大意就是给出两两配对的poor city和rich city,求解最多能修几条不相交的路。此题可以转化为LIS问题。转化过程如下:

数据中有2列,为方便表述,暂且叫做第一列和第二列。
1.若第一列是是递增的(给出的2个样例都是递增的),那么要想尽可能多的做连线,则那么就需要找出第二列中最长的递增子序列,若出现非递增的序列,那么连线后一定会相交
2.若第一列不是递增的,排序后按照1分析即可。
综上所述,题目便转换成LIS问题。

LIS有2种写法,一种是o(n²)的写法,一种是o(nlogn)的写法。题目中给出n<=500,500.采用o(n²)必定超时,最佳策略是o(nlogn)。
推荐一篇介绍这种写法的博文 最长上升子序列nlogn算法。通俗易懂,在此就不赘述如何设计此算法了。

 
LIS问题,不过要优化
#include<bits/stdc++.h>
#define max_v 500005
using namespace std;
int a[max_v],dp[max_v],len;
int main()
{
int n,c=;
while(~scanf("%d",&n))
{
for(int i=; i<=n; i++)
{
int x,y;
scanf("%d %d",&x,&y);
a[x]=y;
}
//dp[k]代表长度为k的LIS序列的最末元素,
//若有多个长度为k的上升子序列,
//则记录最小的那个最末元素
//dp[]中的元素是单调递增的,
//二分优化的时候利用这个性质 dp[]=a[];
len=;
for(int i=; i<=n; i++)
{
if(a[i]>dp[len])
{
dp[++len]=a[i];
}
else
{
int j=lower_bound(dp,dp+len,a[i])-dp;
dp[j]=a[i];
}
}
if(len==)
{
printf("Case %d:\nMy king, at most %d road can be built.\n\n",c++,len);
}else
{
printf("Case %d:\nMy king, at most %d roads can be built.\n\n",c++,len);
}
}
return ;
}

HDU 1025 LIS二分优化的更多相关文章

  1. HDU 1025 (LIS+二分) Constructing Roads In JGShining's Kingdom

    这是最大上升子序列的变形,可并没有LIS那么简单. 需要用到二分查找来优化. 看了别人的代码,给人一种虽不明但觉厉的赶脚 直接复制粘贴了,嘿嘿 原文链接: http://blog.csdn.net/i ...

  2. POJ 3903:Stock Exchange(裸LIS + 二分优化)

    http://poj.org/problem?id=3903 Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  3. HDU 1025:Constructing Roads In JGShining's Kingdom(LIS+二分优化)

    http://acm.hdu.edu.cn/showproblem.php?pid=1025 Constructing Roads In JGShining's Kingdom Problem Des ...

  4. HDU 1025 DP + 二分

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1025 求最长递增子序列,O(n^2)的复杂度超时,需要优化为O(n*logn) f[i]存储长度为i的最小 ...

  5. hdu 1025 lis 注意细节!!!【dp】

    感觉这道题浪费了我半个小时的生命......哇靠!原来输出里面当len=1时是road否则是roads!!! 其实做过hdu 1950就会发现这俩其实一样,就是求最长上升子序列.我用结构体记录要连线的 ...

  6. Hdu 1025(LIS)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  7. Constructing Roads In JGShining's Kingdom(HDU 1025 LIS nlogn方法)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  8. LIS的优化

    二分优化 在求一个最长不上升自序列中,显然其结尾元素越小,越有利于接其他元素,对答案的贡献也就可能会更高 那么我们可以用low[i]去存长度为i的LIS结尾元素的最小值 因此我们只要维护low数组 对 ...

  9. HDU 1025 Constructing Roads In JGShining's Kingdom(二维LIS)

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

随机推荐

  1. 0<Double.MIN_VALUE

    好吧, 吐嘈一下: 前几天写代码时发现 Double 有几个静态成员变量, 如 MAX_VALUE , MIN_VALUE 等, 当时就自己"故名思意"了, 分别当成了 doubl ...

  2. iOS中表视图单元格事件用nib和storyboard的两种写法总结

    从ios6开始,苹果公司推出了storyborad技术取代了nib的写法,这样代码量确实少写了很多,也比较简洁.但是,从学习的角度来说,阿堂认为 用nib的写法,虽然多了些代码,但是对于掌握知识和原理 ...

  3. Drupal8入门文章推荐

    1.<drupal 8 入门 > 2.<初探drupal8>

  4. 签署您的应用--手动签署 APK

    签署您的应用 本文内容 证书和密钥库 签署您的调试构建 调试证书的有效期 管理您的密钥 使用 Google Play 应用签名 自行管理您的密钥和密钥库 签署 APK 生成密钥和密钥库 手动签署 AP ...

  5. Others

    1.可迭代对象可以被for循环获取 2.可变与不可变对象 不可变对象:数字 字符串 元组 所谓不可变是值和身份都不变          赋值时开辟新内存空间生成新值 可变    对象:列表 字典 集合 ...

  6. Ubuntu 16.04 c++ Google框架单元测试

    环境:Ubuntu 16.04 在github网站上下载gtest框架:终端输入git clone https://github.com/google/googletest.git 然后找到 gool ...

  7. java笔记--线程休眠sleep()的运用

    线程休眠sleep()方法的运用 在多线程编程中,有时需要让某个线程优先执行.除了可以设置这个线程的优先级为最高外,更加理想的方法是休眠其他线程,若有线程中断了正在休眠的线程,则抛出Interrupt ...

  8. Linux下卸载安装mysql

    1.卸载命令:# rpm -qa |grep -i mysql # yum remove mysql-community mysql-community-server mysql-community- ...

  9. 微信网页IOS上传图片旋转解决方案

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  10. Java——并发编程

    1.在java中守护线程和本地线程区别? java中的线程分为两种:守护线程(Daemon)和用户线程(User). 任何线程都可以设置为守护线程和用户线程,通过方法Thread.setDaemon( ...