\(\mathcal{Description}\)

  Link.

  给定 \(n\) 堆石子,数量为 \(\{a_n\}\),双人博弈,每轮操作选定 \(i<j\le k\),使 \(a_i \leftarrow a_i-1\),\(a_j \leftarrow a_j+1\),\(a_k \leftarrow a_k+1\),并保证操作后所有 \(a_i\ge0\)。求保证先手胜的第一步操作方案数和字典序最小的第一步操作。

  多测,\(n\le21\),\(0\le a_i\le10^4\),数据组数 \(\le10\)。

\(\mathcal{Solution}\)

  由于每次只能取走一个石子,所以一个有 \(x\) 个石子的位置实际上可以看做 \(x\) 堆互不相关的石子放在同一个位置。而由于“互不相关”,求出每个位置上有一颗石子的 SG 函数异或起来就是答案。令 \(\operatorname{sg} (i)\) 表示位置 \(i\) 有一颗石子的 SG 值,显然:

\[ \operatorname{sg} (i)=\operatorname{mex}_{i<j\le k}\{\operatorname{sg} (j)\oplus\operatorname{sg}(k)\}
\]

  扫出 \(\operatorname{sg}\),设所有石子 \(\operatorname{sg}\) 异或和为 \(X\),据此判断是否有解。若有解,暴力枚举第一次操作的 \(i,j,k\),若 \(X\oplus \operatorname{sg} (i)\oplus \operatorname{sg} (j)\oplus \operatorname{sg} (k)=0\),说明操作后先手必败,此次操作计入贡献,最终 \(\mathcal O(Tn^3)\) 就解决啦!

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <cstring> const int MAXN = 21;
int n, sg[MAXN + 5], a[MAXN + 5]; inline int calcSG ( const int i ) {
if ( ~sg[i] ) return sg[i];
bool vis[105] {};
for ( int j = i + 1; j <= n; ++ j ) {
for ( int k = j; k <= n; ++ k ) {
vis[calcSG ( j ) ^ calcSG ( k )] = true;
}
}
for ( int j = 0; ; ++ j ) if ( !vis[j] ) return sg[i] = j;
} int main () {
int T;
for ( scanf ( "%d", &T ); T --; ) {
scanf ( "%d", &n ), memset ( sg, 0xff, sizeof sg );
int ans = 0;
for ( int i = 1; i <= n; ++ i ) {
if ( scanf ( "%d", &a[i] ), a[i] & 1 ) {
ans ^= calcSG ( i );
}
}
if ( !ans ) { puts ( "-1 -1 -1\n0" ); continue; }
int ways = 0;
for ( int i = 1; i <= n; ++ i ) {
if ( !a[i] ) continue;
for ( int j = i + 1; j <= n; ++ j ) {
for ( int k = j; k <= n; ++ k ) {
if ( !( ans ^ calcSG ( i ) ^ calcSG ( j ) ^ calcSG ( k ) ) && !ways ++ ) {
printf ( "%d %d %d\n", i - 1, j - 1, k - 1 );
}
}
}
}
printf ( "%d\n", ways );
}
return 0;
}

Solution -「HNOI 2007」「洛谷 P3185」分裂游戏的更多相关文章

  1. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  2. 洛谷P1118 数字三角形游戏

    洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直 ...

  3. 洛谷P1274-魔术数字游戏

    Problem 洛谷P1274-魔术数字游戏 Accept: 118    Submit: 243Time Limit: 1000 mSec    Memory Limit : 128MB Probl ...

  4. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  5. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  6. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  7. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  8. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

  9. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

随机推荐

  1. python安装第三方库的步骤

    windows下举例:1.下载openpyxl,http://pypi.doubanio.com/simple/openpyxl/2.将下载后的文件解压放到Python文件夹下的Lib文件夹下3.cm ...

  2. mysql数据库读写分离教程

    注意:实现MySQL读写分离的前提是我们已经将MySQL主从复制配置完毕    一.Mycat实现读写分离安装和配置 架构规划: 192.168.201.150 master 主节点 192.168. ...

  3. nuxt服务端渲染

    <template> <div class="page"> page is search <ul> <li v-for="(it ...

  4. 【Java】java基础

    文章目录 Java基础 1 注释.标识符.关键字 1.1 注释 1.2 关键字 1.3 标识符 1.4 数据类型 1.4.1 基本类型 1.4.2 引用类型 1.4.3 整数类型拓展 1.4.4 浮点 ...

  5. day23 结构体

    (1).若有说明和定义: typedef int *integer: integer p,*q: 则下列叙述正确的是[C] (A).q是基类型位int的指针变量 (B).p是int型变量 (C).p是 ...

  6. Visaul Studio 2015 MFC控件使用之--按钮(Button)

    在MFC开发当中,比较常用的控件之一便是Button控件了,该控件的除了可以通过点击产生的开关量当作开关来使用,还可以设置其颜色变化当作显示灯,按钮控件的使用相对来比较简单. 打开工程解决方案的资源视 ...

  7. leeetcode 20. 有效的括号

    20. 有效的括号 问题描述 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的 ...

  8. Kubernetes&Docker集群部署

    集群环境搭建 搭建kubernetes的集群环境 环境规划 集群类型 kubernetes集群大体上分为两类:一主多从和多主多从. 一主多从:一台Master节点和多台Node节点,搭建简单,但是有单 ...

  9. 【刷题-LeetCode】201 Bitwise AND of Numbers Range

    Bitwise AND of Numbers Range Given a range [m, n] where 0 <= m <= n <= 2147483647, return t ...

  10. 🏆【Alibaba中间件技术系列】「RocketMQ技术专题」Broker服务端自动创建topic的原理分析和问题要点指南

    前提背景 使用RocketMQ进行发消息时,一般我们是必须要指定topic,此外topic必须要提前建立,但是topic的创建(自动或者手动方式)的设置有一个开关autoCreateTopicEnab ...