实在是打击人信心的一场比赛啊……一不注意就掉了 50+ 分,rating 没了啊/ll/dk/wq/kk

A

Weak pretest!!!!!11 /fn/fn/fn

一个很显然的注意点是在交换前后,对于每一种数 \(c\) 而言,奇数位上的 \(c\) 中朝右的人数的奇偶性不会发生变化,偶数位上的 \(c\) 中朝右的人数的奇偶性也不会发生变化,因此我们只需检验排序前后奇偶位上数的组成是否相同即可,时间复杂度 \(Tn\log n\)。

现场降智选手,指我无疑了

B

首先根据手玩样例法可以发现 \(\dbinom{13}{5}=\dbinom{13}{8}=1287,\dbinom{13}{4}=\dbinom{13}{9}=715\),因此考虑 \(5,8\),以及后面的 \(4,9\) 是个什么东西,再通过瞪眼法可以发现 \(8\) 恰好是样例中 \(0\) 的个数,\(5\) 恰好是每个全 \(1\) 段中 \(1\) 的个数除以二下取整,于是写个组合数求一求即可。

证明?别问我,我什么也不知道

C

首先记目前没有确定是否被划分进集合的排列的集合为 \(S\),那么我们枚举 \(S\) 中每一个排列 \(p\),如果排列 \(p\) 中存在一个位置满足 \(S\) 中没有其他排列和它值相同,那么根据题目的性质显然它只能在前 \(n\) 个排列中,与此同时我们把与它有重复值的排列设为“不在前 \(n\) 个排列中”并从 \(S\) 中删去;否则根据抽屉原理,每个数在 \(S\) 对应的列中必须恰好出现了两次,这也就意味着那些在原拉丁方阵中的排列和不在原拉丁方阵中的排列是平分秋色的,都能和已经选出的排列集合组成拉丁方阵,此时我们需要将答案乘以 \(2\),并随便选择一个排列设为在拉丁方阵中,并将与其存在重复值的排列从 \(S\) 中删除,重复以下步骤直到选出 \(n\) 个排列为止即可。

时间复杂度 \(n^3\)。

D

我们考虑求出每个排列所有时刻坐标的和 \(s1_i\) 以及平方和 \(s2_i\),记 \(S=\sum\limits_{i=1}^mv_i,T=\sum\limits_{i=1}^mv_i^2\),那么如果没有错误元素,一定有 \(s1_{i+1}-s1_i=S\),由此可以确定错误元素所在的时刻 \(p\),而根据第 \(j\) 个人 \(i\) 时刻的坐标为 \(x_{j}+i·v_j\) 可知,对于三个连续的时刻 \(t-1,t,t+1\),有

\[\begin{cases}
\sum\limits_{j=1}^m(x_j+(t-1)·v_j)^2=s2_{t-1}\\
\sum\limits_{j=1}^m(x_j+t·v_j)^2=s2_{t}\\
\sum\limits_{j=1}^m(x_j+(t+1)·v_j)^2=s2_{t+1}
\end{cases}
\]

一式加三式减两倍的二式,得

\[T=\dfrac{s2_{t-1}+s2_{t+1}-2s2_t}{2}
\]

由此可以确定第 \(i\) 行所有坐标的和及平方和,这样我们枚举修改的元素是哪个,根据第 \(i\) 行坐标的和求出被改前的元素,并 check 平方和是否满足要求即可。

时间复杂度 \(nm\)。

Codeforces Round #732 (Div.1) 题解的更多相关文章

  1. Codeforces Round #182 (Div. 1)题解【ABCD】

    Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...

  2. Codeforces Round #608 (Div. 2) 题解

    目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...

  3. Codeforces Round #525 (Div. 2)题解

    Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...

  4. Codeforces Round #528 (Div. 2)题解

    Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...

  5. Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F

    Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...

  6. Codeforces Round #677 (Div. 3) 题解

    Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...

  7. Codeforces Round #665 (Div. 2) 题解

    Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...

  8. Codeforces Round #160 (Div. 1) 题解【ABCD】

    Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...

  9. Codeforces Round #383 (Div. 2) 题解【ABCDE】

    Codeforces Round #383 (Div. 2) A. Arpa's hard exam and Mehrdad's naive cheat 题意 求1378^n mod 10 题解 直接 ...

随机推荐

  1. python常用功能

    1. 获取昨天日期 引入datetime模块 import datetime def getYesterday(): today = datetime.date.today() #返回当前本地日期 # ...

  2. 【c++ Prime 学习笔记】第11章 关联容器

    关联容器的元素按照关键字来保存和访问,而顺序容器的元素是按照在容器中的位置来保存和访问 关联容器支持高效的关键字查找和访问 2种关联容器: map中的元素是关键字-值对(key-value对),关键字 ...

  3. Servlet学习一(Servlet的使用流程)

    一.servlet运行流程 运行流程:浏览器发送请求到服务器,服务器根据url地址在webapps中寻找对应的项目文件夹然后再web.xml中检索对应的servlet,并进行调用二.servlet类写 ...

  4. [no_code][Alpha]测试报告

    项目 内容 2020春季计算机学院软件工程(罗杰 任健) 2020春季计算机学院软件工程(罗杰 任健) 作业要求 测试报告 我们在这个课程的目标是 设计出一个OCR表单处理软件 这个作业在哪个具体方面 ...

  5. 乘风破浪,遇见上一代操作系统Windows 10 - 抢鲜尝试安装新微软商店(Microsoft Store)

    背景 在微软官方文章的<十一项关于微软商店新知>中提到: 新的微软商店现在可在Windows 11上找到,我们很高兴地分享,它将在未来几个月内提供给Windows 10客户!我们将很快分享 ...

  6. Noip模拟14 2021.7.13

    T1 队长快跑 本身dp就不强的小马看到这题并未反映过来是个dp(可能是跟题面太过于像那个黑题的队长快跑相似) 总之,基础dp也没搞出来,不过这题倒是启发了小马以后考试要往dp哪里想想 $dp_{i, ...

  7. segyio库的使用

    最近在使用segyio库读取segy文件的时候默认读取总是出现问题,经过分析发现是我们通常所用的segy格式与本库的默认格式略有不同,修改参数就可以读取: 1) with segyio.open(fi ...

  8. linux中dd命令

    转载:https://www.runoob.com/linux/linux-comm-dd.html Linux dd 命令用于读取.转换并输出数据. dd 可从标准输入或文件中读取数据,根据指定的格 ...

  9. python doc os 参考

    os --- 操作系统接口模块 源代码: Lib/os.py 该模块提供了一些方便使用操作系统相关功能的函数. 如果你是想读写一个文件,请参阅 open(),如果你想操作路径,请参阅 os.path  ...

  10. hdu 1159 Common Subsequence(最长公共子序列,DP)

    题意: 两个字符串,判断最长公共子序列的长度. 思路: 直接看代码,,注意边界处理 代码: char s1[505], s2[505]; int dp[505][505]; int main(){ w ...