正题

题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1600


题目大意

给出一个字符串\(s\),每次在最后插入一个字符后求它的所有分别子串构出的\(fail\)树的深度和。

\(1\leq Q\leq 10^5\)


解题思路

考虑两个相等的子串长度为\(len\),那么以后面那个子串末尾结尾的\(fail\)有\(len\)种左端点的情况是指向前面那个子串的。

新插入后所有串的后缀都是新的子串,考虑如何统计这些串的答案,首先不考虑最后一个位置那么深度和就是前面那次新加的深度和。现在只需要计算新插入那个字符在这\(n\)个串中的贡献,我们可以找出所有和这些串的所有后缀相同的子串都会产生贡献,这个可以用\(SAM\)统计。

所以可以考虑先把完整的串的\(SAM\)建出来再考虑做法,每次插入一个字符串的时候先查询它在\(parents\)树上到根的路径的边权乘上边的长度和,然后再向这条路径上每条边的权值加一。

注意到要路径加权求和,所以要加一个树剖就可以了

时间复杂度\(O(n\log^2 n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=4e5+10,P=1e9+7;
struct node{
int to,next;
}a[N];
int n,cnt,last,tot,dfc,p[N],ls[N];
int siz[N],son[N],top[N],dfn[N],rfn[N];
int fa[N],ch[N][26];ll len[N];
char s[N];bool v[N];
struct SegTree{
ll w[N<<2],lazy[N<<2];
void Downdata(int x,int L,int R){
if(!lazy[x])return;
int mid=(L+R)>>1;
w[x*2]=(w[x*2]+lazy[x]*(len[dfn[mid]]-len[dfn[L-1]]))%P;
w[x*2+1]=(w[x*2+1]+lazy[x]*(len[dfn[R]]-len[dfn[mid]]))%P;
lazy[x*2]+=lazy[x];lazy[x*2+1]+=lazy[x];
lazy[x]=0;return;
}
void Change(int x,int L,int R,int l,int r){
if(L==l&&R==r){
(w[x]+=len[dfn[R]]-len[dfn[L-1]])%=P;
lazy[x]++;return;
}
int mid=(L+R)>>1;Downdata(x,L,R);
if(r<=mid)Change(x*2,L,mid,l,r);
else if(l>mid) Change(x*2+1,mid+1,R,l,r);
else Change(x*2,L,mid,l,mid),Change(x*2+1,mid+1,R,mid+1,r);
w[x]=(w[x*2]+w[x*2+1]);
return;
}
ll Ask(int x,int L,int R,int l,int r){
if(L==l&&R==r)return w[x];
int mid=(L+R)>>1;Downdata(x,L,R);
if(r<=mid)return Ask(x*2,L,mid,l,r);
if(l>mid)return Ask(x*2+1,mid+1,R,l,r);
return (Ask(x*2,L,mid,l,mid)+Ask(x*2+1,mid+1,R,mid+1,r))%P;
}
}T;
void Insert(int c){
int p=last,np=last=++cnt;
len[np]=len[p]+1;
for(;p&&!ch[p][c];p=fa[p])ch[p][c]=np;
if(!p)fa[np]=1;
else{
int q=ch[p][c];
if(len[q]==len[p]+1)fa[np]=q;
else{
int nq=++cnt;len[nq]=len[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
fa[nq]=fa[q];fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}
v[np]=1;return;
}
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void dfs(int x){
siz[x]=1;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
dfs(y);siz[x]+=siz[y];
len[y]=len[y]-len[x];
if(siz[y]>siz[son[x]])son[x]=y;
}
return;
}
void dfs2(int x){
dfn[++dfc]=x;rfn[x]=dfc;
if(son[x]){
top[son[x]]=top[x];
dfs2(son[x]);
}
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==son[x])continue;
top[y]=y;dfs2(y);
}
return;
}
void print(int x)
{if(x>9)print(x/10);putchar(x%10+48);return;}
signed main()
{
freopen("string.in","r",stdin);
freopen("string.out","w",stdout);
scanf("%d",&n);
scanf("%s",s+1);last=cnt=1;
for(int i=1;i<=n;i++)
Insert(s[i]-'a'),p[i]=last;
for(int i=2;i<=cnt;i++)addl(fa[i],i);
top[1]=1;dfs(1);dfs2(1);
ll k=0,ans=0;
for(int i=1;i<=cnt;i++)
len[dfn[i]]=(len[dfn[i]]+len[dfn[i-1]])%P;
for(int i=1;i<=n;i++){
int x=p[i];
while(x){
k=(k+T.Ask(1,1,cnt,rfn[top[x]],rfn[x]))%P;
x=fa[top[x]];
}
ans=(ans+k)%P;x=p[i];
while(x){
T.Change(1,1,cnt,rfn[top[x]],rfn[x]);
x=fa[top[x]];
}
print((ans+P)%P);
putchar('\n');
}
return 0;
}

51nod1600-Simple KMP【SAM,树链剖分】的更多相关文章

  1. 【UOJ#435】【集训队作业2018】Simple Tree 分块+树链剖分

    题目大意: 有一棵有根树,根为 1 ,点有点权.现在有 m 次操作,操作有 3 种:1 x y w ,将 x 到 y 的路径上的点点权加上 w (其中 w=±1w=±1 ):2 x y ,询问在 x ...

  2. 2019.03.09 bzoj4999: This Problem Is Too Simple!(树链剖分+线段树动态开点)

    传送门 题意:给一颗树,每个节点有个初始值,要求支持将i节点的值改为x或询问i节点到j节点的路径上有多少个值为x的节点. 思路: 考虑对每种颜色动态开点,然后用树剖+线段树维护就完了. 代码: #in ...

  3. 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree

    原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...

  4. UOJ#435. 【集训队作业2018】Simple Tree 树链剖分,分块

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ435.html 前言 分块题果然是我这种蒟蒻写不动的.由于种种原因,我写代码的时候打错了很多东西,最致命的是数组开小了.* ...

  5. 【bzoj4999】This Problem Is Too Simple! 树链剖分+动态开点线段树

    题目描述 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x<2^31) ...

  6. HDU 4897 Little Devil I(树链剖分)(2014 Multi-University Training Contest 4)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4897 Problem Description There is an old country and ...

  7. CF 191C Fools and Roads lca 或者 树链剖分

    They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, popu ...

  8. Codeforces Round #329 (Div. 2) D. Happy Tree Party 树链剖分

    D. Happy Tree Party Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/593/p ...

  9. hdu 5052 树链剖分

    Yaoge’s maximum profit Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

随机推荐

  1. com 组件的本知识

    (今日看到网络上关于"COM中GUID......"文章,写的好,故记录之.)当初微软设计com规范的时候,有两种选择来保证用户的设计的com组件可以全球唯一:第一种是采用和Int ...

  2. 【springcloud alibaba】配置中心之nacos

    接着上一篇的[springcloud alibaba]注册中心之nacos,这一篇主要讲nacos的配置中心能力.nacos的集群部署及持久化请看上一篇. ---------------------- ...

  3. HttpClient 4.3教程-前言

    前言 Http协议应该是互联网中最重要的协议.持续增长的web服务.可联网的家用电器等都在继承并拓展着Http协议,向着浏览器之外的方向发展. 虽然jdk中的java.net包中提供了一些基本的方法, ...

  4. Executor执行器

    Executors: CachedThreadPool  将为每个任务创建一个线程. public class CachedThreadPool { public static void main(S ...

  5. 关于mysql的备份和恢复

    备份:在登录之前(cmd中)mysqldump -u root -p [数据库名称] > c:/back.sql备份的话,肯定是DBA才能做,所以只能用root:恢复mysql -u root ...

  6. 常用数据库JDBC

    JDBC的URL=协议名+子协议名+数据源名.1. 协议名总是"jdbc".2.子协议名由JDBC驱动程序的编写者决定.3. 数据源名也可能包含用户与口令等信息:这些信息也可单独提 ...

  7. 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建一个版本

    我们可以使用官方 sentry-cli 工具操作 Sentry API,从而来为你的项目管理一些数据.它主要用于管理 iOS.Android 的调试信息文件,以及其他平台的版本(release)和源代 ...

  8. java发送短信开发,第三方接口方法

    必备的三个jar包Maven有自己去下: commons-logging commons-logging 1.1 commons-httpclient commons-httpclient 3.1 c ...

  9. 状态码1xx-6xx的含义

    1xx (临时响应)表示临时响应并需要请求者继续执行操作的状态代码. 100 (继续) 请求者应当继续提出请求. 服务器返回此代码表示已收到请求的第一部分,正在等待其余部分. 101 (切换协议) 请 ...

  10. plsql中数据生成工具data generator的使用

    使用数据库时,有时需要使用大量的数据,可以用PLSQL Developer提供的Data Generator工具, 这里记录一下工具的介绍及几个使用注意事项 1.工具介绍 功能入口位于 工具 菜单下, ...