P4756-Added Sequence【斜率优化】
正题
题目链接:https://www.luogu.com.cn/problem/P4756
题目大意
给出序列\(a\),设\(f(l,r)=|\sum_{i=l}^ra_i|\)。
\(m\)次询问若序列\(a\)全部加上某个数\(x\),求最大的\(f(l,r)\)。
\(1\leq n,m\leq 2\times 10^5\),强制在线(或许)
解题思路
求一次前缀和的话设为\(s_i\),那么\(f(l,r)=|s_r-s_l|\)。其实拆开绝对值不难发现这样就去掉了\(l,r\)的限制,答案就是\(max\{s_r\}-min\{s_l\}\)了。
然后集体加上某个数\(x\)的话,原来的\(s_i\)就变为了\(s_i+i\times x\)了。
然后就是给出\(x\)求最大和最小的\(s_i+i\times x\)。经典的斜率优化把戏。
维护一个上凸壳,一个下凸壳,然后在上面二分就好了。
时间复杂度\(O(n+m\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2e5+10;
ll n,m,top,toq,f[N],s[N],t[N];
ll calc(ll x,ll i)
{return x*i+f[i];}
signed main()
{
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++){
scanf("%lld",&f[i]);f[i]+=f[i-1];
while(top&&(f[i]-f[s[top]])*(s[top]-s[top-1])>=(f[s[top]]-f[s[top-1]])*(i-s[top]))top--;s[++top]=i;
while(toq&&(f[i]-f[t[toq]])*(t[toq]-t[toq-1])<=(f[t[toq]]-f[t[toq-1]])*(i-t[toq]))toq--;t[++toq]=i;
}
ll pre=0,x;
while(m--){
scanf("%lld",&x);x=(x+pre)%(4*n+1)-2*n;
ll l=0,r=top-1;pre=0;
while(l<=r){
ll mid=(l+r)>>1;
if(calc(x,s[mid])>calc(x,s[mid+1]))r=mid-1;
else l=mid+1;
}
pre+=calc(x,s[l]);
l=0;r=toq-1;
while(l<=r){
ll mid=(l+r)>>1;
if(calc(x,t[mid])<calc(x,t[mid+1]))r=mid-1;
else l=mid+1;
}
pre-=calc(x,t[l]);
printf("%lld\n",pre);
}
return 0;
}
P4756-Added Sequence【斜率优化】的更多相关文章
- [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP
POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...
- POJ 3709 K-Anonymous Sequence - 斜率优化dp
描述 给定一个数列 $a$, 分成若干段,每段至少有$k$个数, 将每段中的数减少至所有数都相同, 求最小的变化量 题解 易得到状态转移方程 $F_i = \min(F_j + sum_i - su ...
- POJ3709 K-Anonymous Sequence 斜率优化DP
POJ3709 题意很简单 给n个递增整数(n<=500000)和一种操作(选择任意个数 使他们减少整数值) 使得对于所有的整数 在数列中 有k个相等的数 O(n^2)的DP方程很容易得出 如下 ...
- luogu P4756 Added Sequence(凸包+思维)
一眼望去不会. 考虑问题中的\(f(i,j)=|\sum_{p=i}^{j}a_p |\)的实际意义. 其实就是前缀和相减的绝对值. \(f(i,j)=|\ sum[j]-sum[i-1]\ |\ ...
- UOJ#104. 【APIO2014】Split the sequence 动态规划 斜率优化
原文链接www.cnblogs.com/zhouzhendong/p/UOJ104.html 题解 首先证明一个结论:对于一种分割方案,分割的顺序不影响最终结果. 证明:对于树 a[x] 和 a[y] ...
- POJ 3709 K-Anonymous Sequence(斜率优化DP)
[题目链接] http://poj.org/problem?id=3709 [题目大意] 给出一个长度为n个非严格单调递增数列,每次操作可以使得其中任意一项减一, 问现在使得数列中每项数相同的数的数量 ...
- poj3709 K-Anonymous Sequence[贪心+斜率优化dp]
地址 n个数,可进行把一个数减小的操作,代价为减小的值.现求使数列任意一个数都存在至少k-1个数和他相同,问操作的最小代价. 可以先考虑最小的数,由于只能减,所以必须得至少k-1个数减为最小数,贪心策 ...
- 【DP】斜率优化
斜率优化 入门题:PKU3709 很多人貌似都是做这道题来K斜率优化的,所以看了资料以后还是开始入手吧. 然而还是得跪求大神的程序啊 ORZ ORZ…… 其实理解斜率优化就是会列斜率不等式,还要理解剔 ...
- HDU 2993 MAX Average Problem dp斜率优化
MAX Average Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
随机推荐
- C# 调用DOS 命令
class NetWorkDeviceInfo { public static string GetDeviceInfo() { System.Diagnostics.Process p = new ...
- 使用Visual Studio分析dump
最近系统是不是CPU会飙升的百分之九十多甚至百分百,在本地又很难复现问题,无法定位问题出现在哪. 可以用转储文件来保存现场,然后通过分析dump文件可以大概分析出问题的所在 生成转存文件 在CPU飙升 ...
- ES6 promise的应用
html部分 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <me ...
- msyql redo log和binlog
更新语句执行流程 下面是这个表的创建语句,这个表有一个主键 ID 和一个整型字段 c: create table T(ID int primary key, c int); 如果要将 ID=2 这一行 ...
- 前端~定位属性position(relative、absolute、fixed)的分析
前端~定位属性position(relative.absolute.fixed)的分析 1,简单了解: relative:移动自身时,参考自身的原来位置而移动,移动子元素(子元素设置了absolute ...
- 人生重开模拟器「GitHub 热点速览 v.21.36」
作者:HelloGitHub-小鱼干 人生是不能重来的,但是 lifeRestart 能满足你的重开心愿.初始值不满意,你可以一直随机生成或者自动添加颜值.智力.运气值,倒是一种"重生&qu ...
- 致敬mentohust,路由器使用Socket认证华科校园网
致敬mentohust,路由器使用Socket认证华科校园网 前言: 上一篇文章中,为了解决ESP32华科无线网认证的问题,我成功把网页认证机制用Python+Socket复现.但痛点依然存在,无线网 ...
- MyBatis学习总结(六)——Mybatis3.x与Spring4.x整合
一.搭建开发环境 1.1.使用Maven创建Web项目 执行如下命令: mvn archetype:create -DgroupId=me.gacl -DartifactId=spring4-myba ...
- MongoDB(6)- BSON 数据类型
BSON BSON是一种二进制序列化格式,用于在 MongoDB 中存储文档和进行远程过程调用 跟 JSON 的数据结构很像,但是支持更丰富的数据类型 数据类型 数据类型 序号 别名 备注 Doubl ...
- epoll代码框架
epoll代码实现框架: #define MAX_EVENTS 10 struct epoll_event ev, events[MAX_EVENTS]; int listen_sock, conn_ ...