先枚举$d=\gcd$,然后暴力枚举所有$d$的倍数,相当于求出若干个数中最大的互素对

假设选出的数依从大到小排序后为$a_{i}$,令$g_{i}=\min_{(a_{i},a_{j})=1}j$,则答案为$\max a_{i}\cdot a_{g_{i}}$

考虑一种比较奇怪的计算$g_{i}$的方式,先求出$tot=\sum_{j=1}^{n}[(a_{i},a_{j})=1]$,然后从$n$到1依次删除,直到删除的数中与$a_{i}$互素的数达到了$tot$个

关于$tot$的计算可以用莫比乌斯反演,即化简为$\sum_{d|a_{i}}\mu(d)\sum_{j=1}^{n}[d|a_{j}]$,记后面的式子为$f(d)$,可以在插入$a_{j}$时处理,那么就可以做到”均摊“单次插入/删除/询问$o(\ln n)$

之后考虑从$n$到1依次去删除,复杂度为$o(n-g_{i})$,但注意到若$g_{i}\ge g_{i-1}$那么没有意义,因此从$g_{i-1}$开始统计(即令$n=g_{i-1}$)就可以做到$o(n\ln^{2}n)$了(枚举$d$+计算$tot$的调和级数和gcd)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 vector<int>v,d[N];
5 int n,x,vis[N],mu[N],p[N],f[N];
6 long long ans;
7 int gcd(int x,int y){
8 if (!y)return x;
9 return gcd(y,x%y);
10 }
11 void update(int k,int p){
12 for(int i=0;i<d[k].size();i++)f[d[k][i]]+=p;
13 }
14 int query(int k){
15 int ans=0;
16 for(int i=0;i<d[k].size();i++)ans+=mu[d[k][i]]*f[d[k][i]];
17 return ans;
18 }
19 int main(){
20 mu[1]=1;
21 for(int i=2;i<N-4;i++){
22 if (!vis[i]){
23 p[++p[0]]=i;
24 mu[i]=-1;
25 }
26 for(int j=1;(j<=p[0])&&(i*p[j]<N-4);j++){
27 vis[i*p[j]]=1;
28 if (i%p[j])mu[i*p[j]]=-mu[i];
29 else{
30 mu[i*p[j]]=0;
31 break;
32 }
33 }
34 }
35 scanf("%d",&n);
36 memset(vis,0,sizeof(vis));
37 for(int i=1;i<=n;i++){
38 scanf("%d",&x);
39 vis[x]=1;
40 }
41 for(int i=1;i<N-4;i++)
42 for(int j=i;j<N-4;j+=i)d[j].push_back(i);
43 for(int i=1;i<N-4;i++){
44 v.clear();
45 for(int j=i;j<N-4;j+=i)
46 if (vis[j])v.push_back(j/i);
47 int m=v.size();
48 for(int j=0;j<m;j++)update(v[j],1);
49 for(int j=m-1,k=0;j>=0;j--){
50 int sum=query(v[j]);
51 while (sum){
52 if (gcd(v[j],v[k])==1){
53 sum--;
54 ans=max(ans,1LL*v[j]*v[k]*i);
55 }
56 update(v[k++],-1);
57 }
58 if (!j)
59 while (k<m)update(v[k++],-1);
60 }
61 }
62 printf("%lld",ans);
63 }

[cf1285F]Classical的更多相关文章

  1. JavaScript Patterns 6.2 Expected Outcome When Using Classical Inheritance

    // the parent constructor function Parent(name) { this.name = name || 'Adam'; } // adding functional ...

  2. What is classical music

    quanben's definition of classical music is a definition formed by the following aspects, 1. music wr ...

  3. Classical Inheritance in JavaScript

    JavaScript is a class-free, object-oriented language, and as such, it uses prototypal inheritance in ...

  4. ORACLE 11G R2 RAC classical install OGG12.1(LINUX) 经典抽取模式单项同步配置OGG12.1

    博文结构图如下: 一.环境描述以及注意事项 1.1 环境简介 IP 系统 Oracle版本 OGG版本 源端 172.16.10.16/36 RHEL6.5 oracle11204 12.1 目标端 ...

  5. How does Circus stack compare to a classical stack?

    Frequently Asked Questions - Circus 0.15.0 documentation https://circus.readthedocs.io/en/latest/faq ...

  6. JavaScript Patterns 6.1 Classical Versus Modern Inheritance Patterns

    In Java you could do something like: Person adam = new Person(); In JavaScript you would do: var ada ...

  7. The 50 Most Essential Pieces of Classical Music

    1. Die Zauberflöte ("The Magic Flute"), K. 620: Overture London Philharmonic Orchestra 7:2 ...

  8. Classical Binary Search

    Find any position of a target number in a sorted array. Return -1 if target does not exist. 与题目 Firs ...

  9. Classical method of machine learning

    PCA principal components analysis kmeans bayes spectral clustering svm EM hidden Markov models deep ...

随机推荐

  1. redis学习笔记-01 string类型命令

    一.set key value set joker 123456 #设定key为joker,value为123456的数据 二.keys * keys * #用于查看该数据库中所有的key值 三.se ...

  2. bzoj2038 小z的袜子 (莫队)

    题目大意 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具体来说,小Z把这N只袜子从1到N编 ...

  3. 2021.7.27--Benelux Algorithm Programming Contest 2020 补提

    I Jigsaw 题目内容: 链接:https://ac.nowcoder.com/acm/contest/18454/I 来源:牛客网 You have found an old jigsaw pu ...

  4. 超详细的Ribbon源码解析

    Ribbon简介 什么是Ribbon? Ribbon是springcloud下的客户端负载均衡器,消费者在通过服务别名调用服务时,需要通过Ribbon做负载均衡获取实际的服务调用地址,然后通过http ...

  5. px,dp sp是像素、尺寸、尺寸

    px:即像素,1px代表屏幕上一个物理的像素点:px单位不被建议使用,因为同样100px的图片,在不同手机上显示的实际大小可能不同,如下图所示(图片来自android developer guide, ...

  6. Noip模拟16 2021.7.15

    题目真是越来越变态了 T1 Star Way To Heaven 首先,你要看出这是一个最小生成树的题(妙吧?) 为什么可以呢? 我们发现从两点连线的中点过是最优的,但是上下边界怎么办呢? 我们把上下 ...

  7. CodeForces-1076E Vasya and a Tree

    CodeForces - 1076E Problem Description: Vasya has a tree consisting of n vertices with root in verte ...

  8. STM32入门-STM32时钟系统,时钟初始化配置函数

    在前面推文的介绍中,我们知道STM32系统复位后首先进入SystemInit函数进行时钟的设置,然后进入主函数main.那么我们就来看下SystemInit()函数到底做了哪些操作,首先打开我们前面使 ...

  9. 替换空格 牛客网 剑指Offer

    替换空格 牛客网 剑指Offer 题目描述 请实现一个函数,将一个字符串中的每个空格替换成"%20".例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20A ...

  10. 聊聊@Transactional 的失效场景,有哪些坑?

    先别急着回答,看完再说也不迟嘛.我们都知道在 Spring 项目中,我们可以直接使用注解 @Transactional 来标识一个事务方法.然而,你可能并不知道这个事务是不是按照你想的方式执行.下面我 ...