[cf1285F]Classical
先枚举$d=\gcd$,然后暴力枚举所有$d$的倍数,相当于求出若干个数中最大的互素对
假设选出的数依从大到小排序后为$a_{i}$,令$g_{i}=\min_{(a_{i},a_{j})=1}j$,则答案为$\max a_{i}\cdot a_{g_{i}}$
考虑一种比较奇怪的计算$g_{i}$的方式,先求出$tot=\sum_{j=1}^{n}[(a_{i},a_{j})=1]$,然后从$n$到1依次删除,直到删除的数中与$a_{i}$互素的数达到了$tot$个
关于$tot$的计算可以用莫比乌斯反演,即化简为$\sum_{d|a_{i}}\mu(d)\sum_{j=1}^{n}[d|a_{j}]$,记后面的式子为$f(d)$,可以在插入$a_{j}$时处理,那么就可以做到”均摊“单次插入/删除/询问$o(\ln n)$
之后考虑从$n$到1依次去删除,复杂度为$o(n-g_{i})$,但注意到若$g_{i}\ge g_{i-1}$那么没有意义,因此从$g_{i-1}$开始统计(即令$n=g_{i-1}$)就可以做到$o(n\ln^{2}n)$了(枚举$d$+计算$tot$的调和级数和gcd)
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 vector<int>v,d[N];
5 int n,x,vis[N],mu[N],p[N],f[N];
6 long long ans;
7 int gcd(int x,int y){
8 if (!y)return x;
9 return gcd(y,x%y);
10 }
11 void update(int k,int p){
12 for(int i=0;i<d[k].size();i++)f[d[k][i]]+=p;
13 }
14 int query(int k){
15 int ans=0;
16 for(int i=0;i<d[k].size();i++)ans+=mu[d[k][i]]*f[d[k][i]];
17 return ans;
18 }
19 int main(){
20 mu[1]=1;
21 for(int i=2;i<N-4;i++){
22 if (!vis[i]){
23 p[++p[0]]=i;
24 mu[i]=-1;
25 }
26 for(int j=1;(j<=p[0])&&(i*p[j]<N-4);j++){
27 vis[i*p[j]]=1;
28 if (i%p[j])mu[i*p[j]]=-mu[i];
29 else{
30 mu[i*p[j]]=0;
31 break;
32 }
33 }
34 }
35 scanf("%d",&n);
36 memset(vis,0,sizeof(vis));
37 for(int i=1;i<=n;i++){
38 scanf("%d",&x);
39 vis[x]=1;
40 }
41 for(int i=1;i<N-4;i++)
42 for(int j=i;j<N-4;j+=i)d[j].push_back(i);
43 for(int i=1;i<N-4;i++){
44 v.clear();
45 for(int j=i;j<N-4;j+=i)
46 if (vis[j])v.push_back(j/i);
47 int m=v.size();
48 for(int j=0;j<m;j++)update(v[j],1);
49 for(int j=m-1,k=0;j>=0;j--){
50 int sum=query(v[j]);
51 while (sum){
52 if (gcd(v[j],v[k])==1){
53 sum--;
54 ans=max(ans,1LL*v[j]*v[k]*i);
55 }
56 update(v[k++],-1);
57 }
58 if (!j)
59 while (k<m)update(v[k++],-1);
60 }
61 }
62 printf("%lld",ans);
63 }
[cf1285F]Classical的更多相关文章
- JavaScript Patterns 6.2 Expected Outcome When Using Classical Inheritance
// the parent constructor function Parent(name) { this.name = name || 'Adam'; } // adding functional ...
- What is classical music
quanben's definition of classical music is a definition formed by the following aspects, 1. music wr ...
- Classical Inheritance in JavaScript
JavaScript is a class-free, object-oriented language, and as such, it uses prototypal inheritance in ...
- ORACLE 11G R2 RAC classical install OGG12.1(LINUX) 经典抽取模式单项同步配置OGG12.1
博文结构图如下: 一.环境描述以及注意事项 1.1 环境简介 IP 系统 Oracle版本 OGG版本 源端 172.16.10.16/36 RHEL6.5 oracle11204 12.1 目标端 ...
- How does Circus stack compare to a classical stack?
Frequently Asked Questions - Circus 0.15.0 documentation https://circus.readthedocs.io/en/latest/faq ...
- JavaScript Patterns 6.1 Classical Versus Modern Inheritance Patterns
In Java you could do something like: Person adam = new Person(); In JavaScript you would do: var ada ...
- The 50 Most Essential Pieces of Classical Music
1. Die Zauberflöte ("The Magic Flute"), K. 620: Overture London Philharmonic Orchestra 7:2 ...
- Classical Binary Search
Find any position of a target number in a sorted array. Return -1 if target does not exist. 与题目 Firs ...
- Classical method of machine learning
PCA principal components analysis kmeans bayes spectral clustering svm EM hidden Markov models deep ...
随机推荐
- 利用Jackson序列化实现数据脱敏
几天前使用了Jackson对数据的自定义序列化.突发灵感,利用此方法来简单实现接口返回数据脱敏,故写此文记录. 核心思想是利用Jackson的StdSerializer,@JsonSerialize, ...
- 从零搭建基于webpack的Electron-Vue3项目(1)——基于webpack的Vue3项目搭建
从零搭建基于webpack的Electron-Vue3项目(1)--基于webpack的Vue3项目搭建 前言 本篇文章内容,主要是基于webpack的Vue3项目开发环境进行搭建,暂时还不涉及到El ...
- JavaScript数组 几个常用方法
前言 数组方法有太多了,本文记录一些本人容易记错的一些数组方法,用于巩固及复习. 后续会慢慢的将其他数组方法添加进来. 善用数组方法可以使数据处理变的优雅且简单. 那下面让我们开始吧: filter( ...
- Serverless 是一种思想状态
来源 | Serverless 公众号:作者 | Ben Kehoe:译者 | donghui 函数不是重点 如果你因为喜欢 Lambda 而选择 Serverless,你这样做的原因是错误的.如果你 ...
- Java初步学习——2021.10.10每日总结,第五周周日
(1)今天做了什么: (2)明天准备做什么? (3)遇到的问题,如何解决? 今天继续学习菜鸟教程java字符串实例 5.字符串反转--reverse方法 public class Main { pub ...
- scala基础篇 源码中 :_*的作用
在scala源码中有大量的:_*,其作用是把Array.list转换为参数列表,作为变长参数传入参数列表 例子: def sumx(a:Int*)={ a.sum } val a=Range(1,9) ...
- 【UE4 设计模式】建造者模式 Builder Pattern
概述 描述 建造者模式,又称生成器模式.是将一个复杂的对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. 建造者模式将客户端与包含多个组成部分的复杂对象的创建过程分离,客户端无需知道复杂 ...
- 第4次 Beta Scrum Meeting
本次会议为Beta阶段第4次Scrum Meeting会议 会议概要 会议时间:2021年6月4日 会议地点:「腾讯会议」线上进行 会议时长:0.5小时 会议内容简介:对完成工作进行阶段性汇报:对下一 ...
- Python中的括号()、[]、{}
长时间不用容易混淆,仅记! 在Python语言中最常见的括号有三种,分别是:小括号().中括号[].花括号{} . Python中的小括号(): 代表tuple元祖数据类型,元祖是一种不可变序列.大多 ...
- 洛谷 P5664 [CSP-S2019] Emiya 家今天的饭
链接: P5664 题意: 给出一个 \(n*m\) 的矩阵 \(a\),选 \(k\) 个格子(\(1\leq k\leq n\)),每行最多选一个,每列最多选\(⌊\dfrac k2⌋\) 个,同 ...