传送门

博客园突然打不开了,奇奇怪怪的……

少写个等号没看出来 nm写反了没看出来 考完5min全拍出来了

手残属性加持 不对拍等于爆零

yysy,我连卢卡斯定理的存在都忘了……

发现要让一大堆皇后能互相攻击,它们貌似只能在同一条直线上

然后发现皇后数量较少的时候好像有特例

所以特判即可

\(O(n)\)解法需要枚举边长,考虑如何优化

枚举边长是省不掉的,考虑处理下柿子

\[\sum\limits_{i=1}^{min(n,m)-1}(n-i)(m-i) = \sum\limits_{i=1}^{min(n,m)-1}nm-(n+m)+i^2 = (min(n,m)-1)nm-(n+m)\sum\limits_{i=1}^{min(n,m)-1}i+\sum\limits_{i=1}^{min(n,m)-1}i^2
\]
  • 有个式子:\(\sum\limits_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\)

    同理,[留坑]

然后还有一个需要处理的式子是 \(\sum\limits_{i=k}^n C_i^k\)

\[\sum\limits_{i=k}^n C_i^k = C_{k+1}^{k+1}+\sum\limits_{i=k+1}^n C_i^k = C_{k+1}^{k+1}+C_{k+1}^k+\sum\limits_{i=k+2}^n C_i^k
\]

发现这两项可以组合,即为

\[C_{k+1}^k + \sum\limits_{i=k+2}^n C_i^k
\]

依次组合,最终原式等于 \(C_{n+1}^{k+1}\)

  • 结论:\(\sum\limits_{i=0}^n C_i^k = C_{n+1}^{k+1}\)

Code:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 310010
#define ll long long
#define int long long char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline ll read() {
ll ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
} ll n, m, k, kn, km;
ll fac[N], inv1[N], inv2[N];
const ll p=3e5+7;
inline ll C(ll n, ll k) {return n>=k?fac[n]*inv2[k]%p*inv2[n-k]%p:0;}
inline ll lucas(ll n, ll k) {return !k?1:lucas(n/p, k/p)*C(n%p, k%p)%p;} namespace task1{
inline ll sig(ll n) {n%=p; return n*(n+1)*inv1[2]%p;}
inline ll sig2(ll n) {n%=p; return n*(n+1)%p*(n*2+1)%p*inv1[6]%p;}
void solve() {
ll ans=0, lim;
n=read(); m=read(); k=read();
kn=n%p; km=m%p;
if (k==1) {printf("%lld\n", (kn*km)%p); return ;}
if (k==3) {
lim=(min(n, m)-1)%p; ans+=4ll*(lim*kn%p*km%p - (kn+km)%p*sig(lim)%p + sig2(lim))%p, ans%=p;
lim=min((n-1)/2, m-1)%p; ans+=2ll*(lim*kn%p*km%p - (2ll*km+kn)%p*sig(lim)%p + 2ll*sig2(lim))%p, ans%=p;
lim=min(n-1, (m-1)/2)%p; ans+=2ll*(lim*kn%p*km%p - (2ll*kn+km)%p*sig(lim)%p + 2ll*sig2(lim))%p, ans%=p;
}
if (k==4) {
lim=min((n-1)/2, m-1)%p; ans+=2ll*(lim*kn%p*km%p - (2ll*km+kn)%p*sig(lim)%p + 2ll*sig2(lim))%p, ans%=p;
lim=min(n-1, (m-1)/2)%p; ans+=2ll*(lim*kn%p*km%p - (2ll*kn+km)%p*sig(lim)%p + 2ll*sig2(lim))%p, ans%=p;
lim=(min(n, m)-1)%p; ans+=(lim*kn%p*km%p - (kn+km)%p*sig(lim)%p + sig2(lim))%p, ans%=p;
lim=((min(n, m)-1)/2)%p; ans+=5ll*(lim*kn%p*km%p - 2ll*(kn+km)%p*sig(lim)%p + 4ll*sig2(lim))%p, ans%=p;
}
if (k==5) {lim=((min(n, m)-1)/2)%p; ans+=2ll*(lim*kn%p*km%p - 2ll*(kn+km)%p*sig(lim)%p + 4ll*sig2(lim))%p, ans%=p;}
if (m>=k) ans+=kn*lucas(m, k)%p, ans%=p;
if (n>=k) ans+=km*lucas(n, k)%p, ans%=p;
if (n>=k && m>=k) {
ans+=4ll*lucas(min(n, m), k+1)%p, ans%=p;
ans+=2ll*(max(n, m)-min(n, m)+1)%p*lucas(min(n, m), k)%p, ans%=p;
}
printf("%lld\n", (ans%p+p)%p);
}
} signed main()
{
int T; T=read();
fac[0]=fac[1]=1; inv1[0]=inv1[1]=1; inv2[0]=inv2[1]=1;
for (int i=2; i<N; ++i) fac[i]=fac[i-1]*i%p;
for (int i=2; i<N; ++i) inv1[i]=(p-p/i)*inv1[p%i]%p;
for (int i=2; i<N; ++i) inv2[i]=inv1[i]*inv2[i-1]%p;
while (T--) task1::solve(); return 0;
}

题解 queen(留坑)的更多相关文章

  1. Codeforces Round #364 (Div. 1)(vp) 没什么题解就留坑待填

    我就做了前两题,第一题第一次vp就把我搞自闭跑路了,第二题第二次又把我搞自闭了 A. As Fast As Possible 细节题 #include<cstdio> #include&l ...

  2. [kuangbin带你飞]专题十一 网络流个人题解(L题留坑)

    A - ACM Computer Factory 题目描述:某个工厂可以利用P个部件做一台电脑,有N个加工用的机器,但是每一个机器需要特定的部分才能加工,给你P与N,然后是N行描述机器的最大同时加工数 ...

  3. 2.18比赛(T2,T3留坑)

    2.18比赛(T2,T3留坑) pdf版题面 pdf版题解 超越一切(ak) [题目描述] 夏洛可得到一个(h+1)×(w+1)的巧克力,这意味着她横着最多可 以切 h 刀,竖着最多可以切 w 刀 她 ...

  4. CPU虚拟化技术(留坑)

    留坑~~~ 不知道这个是这么实现的 CPU虚拟化技术就是单CPU模拟多CPU并行,允许一个平台同时运行多个操作系统,并且应用程序都可以在相互独立的空间内运行而互不影响,从而显著提高计算机的工作效率.虚 ...

  5. 【留坑】uva12299

    这么sb的题本来想练练手记过就是过不了 拍半天也没问题 留坑 哪天有空了去linux下面试试 #include<cstdio> #include<cstring> #inclu ...

  6. 【问题解决方案】Git bash进入多层子目录问题(通配符问题留坑)

    cd进入指定路径下:cd 斜杠 斜杠 方法一: 1- 撇丿,不是"那",盘符前面要加上 / (d盘前面也加,不加也行) 2- 路径名不区分大小写 3- 不用空格 4- 如果目录名中 ...

  7. 题解 Six(留坑)

    传送门 考场上搞了个三进制状压,结果正确性假了-- 有想到从约数下手,但觉得就光预处理约数复杂度就爆炸就没往这边想-- 首先是关于约数个数的证明,再一次感谢战神: 因为 \(n = \prod p_i ...

  8. 题解 c(留坑)

    传送门 这题卡常--而且目前还没有卡过去 首先以原树重心为根,向所有子树重心连边,可以建立一棵点分树 点分树有两个性质: 一个是树高只有log层 另一个是两点在点分树上的lca一定在原树上两点间的树上 ...

  9. 培训补坑(day7:线段树的区间修改与运用)(day6是测试,测试题解以后补坑QAQ)

    补坑咯~ 今天围绕的是一个神奇的数据结构:线段树.(感觉叫做区间树也挺科学的.) 线段树,顾名思义就是用来查找一段区间内的最大值,最小值,区间和等等元素. 那么这个线段树有什么优势呢? 比如我们要多次 ...

随机推荐

  1. 字符串中的第一个唯一字符 python

    给定一个字符串,找到它的第一个不重复的字符,并返回它的索引.如果不存在,则返回 -1. s = "leetcode" 返回 0. s = "loveleetcode&qu ...

  2. Flask(10)- 标准类视图

    前言 前面文章讲解 Flask 路由的时候,都是将 URL 路径和一个视图函数关联 当 Flask 框架接收到请求后,会根据请求 URL,调用响应的视图函数进行处理 Flask 不仅提供了视图函数来处 ...

  3. 入门Kubernetes-minikube本地k8s环境

    前言: 在上一篇 结尾中使用到了minikube方式来做k8s本地环境来学习k8s. 那么这篇先了解下minikube及使用 一.Minikube 简介 minikube 在 macOS.Linux ...

  4. 海亮NOIP集训-每日总结

    [总结] xzh 2021暑假每日结 2021年7月12日 内容主题 DP,树型DP(讲解人:王修涵) 考场题目总结 T1: 考场简单想法: 算出两两点间距离,贪心,所用时间 \(1.5h\) 左右. ...

  5. Python使用笔记001

    一.Pycharm小技巧 1.pycharm创建项目时,选择Python环境,不使用默认的虚拟环境 2.如何在pycharm中查看python版本 Files--Settings--Project I ...

  6. C语言:2.2.1-4

    #include <stdio.h> #define PI 3.1415926 //宏定义末尾没有分别.如果有则成为字符串的一部分 int main() { printf("显示 ...

  7. python twain模块

    >>> help(twain) Help on module twain: NAME twain - Created on Sep 4, 2011 DESCRIPTION @auth ...

  8. 【译】.NET 对象分配工具

    随着 Visual Studio 16.10 的发布,性能分析器又有了一个新的分析引擎,.NET 对象分配工具是第一个加入的工具.这为该工具提供了一些新特性,并显著提高了 perf 性能.在你的 C# ...

  9. 【学习笔记】Github的使用

    在github上上传项目代码 在github官网上新建自己的仓库,需要写好标题和说明文件,然后复制自己的仓库地址 在要上传到的本地project中右键, Git bash here,接着输入 git ...

  10. PAT乙级:1056 组合数的和 (15分)

    PAT乙级:1056 组合数的和 (15分) 给定 N 个非 0 的个位数字,用其中任意 2 个数字都可以组合成 1 个 2 位的数字.要求所有可能组合出来的 2 位数字的和.例如给定 2.5.8,则 ...