Relay外部库使用

本文介绍如何将cuDNN或cuBLAS等外部库与Relay一起使用。

Relay内部使用TVM生成目标特定的代码。例如,使用cuda后端,TVM为用户提供的网络中的所有层生成cuda内核。有时将各种供应商开发的外部库合并到Relay中也很有帮助。幸运的是,TVM具有透明地调用这些库的机制。对于Relay用户,要做的只是适当地设置目标字符串。

在可以使用Relay的外部库之前,TVM必须与要使用的库一起构建。例如,要使用cuDNN,需要启用cmake / config.cmake中的USE_CUDNN选项,并在必要时指定cuDNN include和库目录。

首先,导入Relay和TVM。

import tvm

from tvm import te

import numpy as np

from tvm.contrib import graph_runtime as runtime

from tvm import relay

from tvm.relay import testing

import tvm.testing

创建一个简单的网络

创建一个非常简单的网络进行演示。由卷积,批处理归一化和ReLU激活组成。

out_channels = 16

batch_size = 1

data = relay.var("data", relay.TensorType((batch_size, 3, 224, 224), "float32"))

weight = relay.var("weight")

bn_gamma = relay.var("bn_gamma")

bn_beta = relay.var("bn_beta")

bn_mmean = relay.var("bn_mean")

bn_mvar = relay.var("bn_var")

simple_net = relay.nn.conv2d(

data=data, weight=weight, kernel_size=(3, 3), channels=out_channels, padding=(1, 1)

)

simple_net = relay.nn.batch_norm(simple_net, bn_gamma, bn_beta, bn_mmean, bn_mvar)[0]

simple_net = relay.nn.relu(simple_net)

simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net)

data_shape = (batch_size, 3, 224, 224)

net, params = testing.create_workload(simple_net)

使用cuda后端构建并运行

像往常一样,使用cuda后端构建并运行此网络。通过将日志记录级别设置为DEBUG,Relay图编译的结果将作为伪代码转储。

import logging

logging.basicConfig(level=logging.DEBUG)  # to dump TVM IR after fusion

target = "cuda"

lib = relay.build_module.build(net, target, params=params)

ctx = tvm.context(target, 0)

data = np.random.uniform(-1, 1, size=data_shape).astype("float32")

module = runtime.GraphModule(lib["default"](ctx))

module.set_input("data", data)

module.run()

out_shape = (batch_size, out_channels, 224, 224)

out = module.get_output(0, tvm.nd.empty(out_shape))

out_cuda = out.asnumpy()

生成的伪代码应如下所示。注意如何将偏差添加,批处理规范化和ReLU激活融合到卷积内核中。TVM根据此表示生成单个融合内核。

produce tensor {

// attr [iter_var(blockIdx.z, , blockIdx.z)] thread_extent = 1

// attr [compute] storage_scope = "local"

allocate compute[float32 * 32]

// attr [pad_temp.shared] storage_scope = "shared"

allocate pad_temp.shared[float32 * 180]

// attr [placeholder.shared] storage_scope = "shared"

allocate placeholder.shared[float32 * 144]

// attr [iter_var(blockIdx.y, , blockIdx.y)] thread_extent = 28

// attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = 14

// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 4

// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1

// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 16

produce compute {

compute[0] = 0.000000f

compute[1] = 0.000000f

compute[2] = 0.000000f

compute[3] = 0.000000f

compute[4] = 0.000000f

compute[5] = 0.000000f

compute[6] = 0.000000f

compute[7] = 0.000000f

compute[8] = 0.000000f

compute[9] = 0.000000f

compute[10] = 0.000000f

compute[11] = 0.000000f

compute[12] = 0.000000f

compute[13] = 0.000000f

compute[14] = 0.000000f

compute[15] = 0.000000f

compute[16] = 0.000000f

compute[17] = 0.000000f

compute[18] = 0.000000f

compute[19] = 0.000000f

compute[20] = 0.000000f

compute[21] = 0.000000f

compute[22] = 0.000000f

compute[23] = 0.000000f

compute[24] = 0.000000f

compute[25] = 0.000000f

compute[26] = 0.000000f

compute[27] = 0.000000f

compute[28] = 0.000000f

compute[29] = 0.000000f

compute[30] = 0.000000f

compute[31] = 0.000000f

for (rc.outer, 0, 3) {

produce pad_temp.shared {

// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 4

// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1

// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 16

if (likely(((threadIdx.z*15) < (60 - threadIdx.x)))) {

if (likely((threadIdx.x < 15))) {

pad_temp.shared[(((((threadIdx.z*15) + threadIdx.x)/60)*180) + ((((((threadIdx.z*15) + threadIdx.x)/6) % 10)*18) + ((((threadIdx.z*3) + threadIdx.x)*3) % 18)))] = tvm_if_then_else((((((1 - ((((threadIdx.z*15) + threadIdx.x)/6) % 10)) <= (blockIdx.y*8)) && ((blockIdx.y*8) < (225 - ((((threadIdx.z*15) + threadIdx.x)/6) % 10)))) && ((1 - ((((threadIdx.z*3) + threadIdx.x)*3) % 18)) <= (blockIdx.x*16))) && ((blockIdx.x*16) < (225 - ((((threadIdx.z*3) + threadIdx.x)*3) % 18)))), placeholder[((((((((blockIdx.y*112) + blockIdx.x) + (rc.outer*3136)) + ((((threadIdx.z*15) + threadIdx.x)/60)*9408))*16) + ((((threadIdx.z*3) + threadIdx.x)*3) % 18)) + (((((threadIdx.z*15) + threadIdx.x)/6) % 10)*224)) + -225)], 0.000000f)

pad_temp.shared[(((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/180)*180) + ((((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)*18) + (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)))] = tvm_if_then_else((((((1 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)) <= (blockIdx.y*8)) && ((blockIdx.y*8) < (225 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)))) && ((1 - (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)) <= (blockIdx.x*16))) && ((blockIdx.x*16) < (225 - (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)))), placeholder[((((((((blockIdx.y*112) + blockIdx.x) + (rc.outer*3136)) + ((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/180)*9408))*16) + (((((threadIdx.z*3) + threadIdx.x)*3) + 1) % 18)) + (((((((threadIdx.z*15) + threadIdx.x)*3) + 1)/18) % 10)*224)) + -225)], 0.000000f)

pad_temp.shared[(((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/180)*180) + ((((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)*18) + (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)))] = tvm_if_then_else((((((1 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)) <= (blockIdx.y*8)) && ((blockIdx.y*8) < (225 - ((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)))) && ((1 - (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)) <= (blockIdx.x*16))) && ((blockIdx.x*16) < (225 - (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)))), placeholder[((((((((blockIdx.y*112) + blockIdx.x) + (rc.outer*3136)) + ((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/180)*9408))*16) + (((((threadIdx.z*3) + threadIdx.x)*3) + 2) % 18)) + (((((((threadIdx.z*15) + threadIdx.x)*3) + 2)/18) % 10)*224)) + -225)], 0.000000f)

}

}

}

produce placeholder.shared {

// attr [iter_var(threadIdx.z, , threadIdx.z)] thread_extent = 4

// attr [iter_var(threadIdx.y, , threadIdx.y)] thread_extent = 1

// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 16

if (likely(((threadIdx.z*4) < (16 - (threadIdx.x/3))))) {

if (likely(((threadIdx.z*12) < (48 - threadIdx.x)))) {

if (likely((threadIdx.x < 12))) {

placeholder.shared[(((((threadIdx.z*4) + (threadIdx.x/3))*3) + (threadIdx.x % 3))*3)] = placeholder[(((((rc.outer + (threadIdx.z*12)) + ((threadIdx.x/3)*3))*3) + (threadIdx.x % 3))*3)]

placeholder.shared[((((((threadIdx.z*4) + (threadIdx.x/3))*3) + (threadIdx.x % 3))*3) + 1)] = placeholder[((((((rc.outer + (threadIdx.z*12)) + ((threadIdx.x/3)*3))*3) + (threadIdx.x % 3))*3) + 1)]

placeholder.shared[((((((threadIdx.z*4) + (threadIdx.x/3))*3) + (threadIdx.x % 3))*3) + 2)] = placeholder[((((((rc.outer + (threadIdx.z*12)) + ((threadIdx.x/3)*3))*3) + (threadIdx.x % 3))*3) + 2)]

}

}

}

}

compute[0] = (compute[0] + (pad_temp.shared[threadIdx.x]*placeholder.shared[(threadIdx.z*36)]))

compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[(threadIdx.z*36)]))

compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[(threadIdx.z*36)]))

compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[(threadIdx.z*36)]))

compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[(threadIdx.z*36)]))

compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[(threadIdx.z*36)]))

compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[(threadIdx.z*36)]))

compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[(threadIdx.z*36)]))

compute[8] = (compute[8] + (pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36) + 9)]))

compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 9)]))

compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 9)]))

compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 9)]))

compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 9)]))

compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 9)]))

compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 9)]))

compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 9)]))

compute[16] = (compute[16] + (pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36) + 18)]))

compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 18)]))

compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 18)]))

compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 18)]))

compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 18)]))

compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 18)]))

compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 18)]))

compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 18)]))

compute[24] = (compute[24] + (pad_temp.shared[threadIdx.x]*placeholder.shared[((threadIdx.z*36) + 27)]))

compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 27)]))

compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 27)]))

compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 27)]))

compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 27)]))

compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 27)]))

compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 27)]))

compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 27)]))

compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 1)]))

compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 1)]))

compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 1)]))

compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 1)]))

compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 1)]))

compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 1)]))

compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 1)]))

compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 1)]))

compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 10)]))

compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 10)]))

compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 10)]))

compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 10)]))

compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 10)]))

compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 10)]))

compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 10)]))

compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 10)]))

compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 19)]))

compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 19)]))

compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 19)]))

compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 19)]))

compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 19)]))

compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 19)]))

compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 19)]))

compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 19)]))

compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 1)]*placeholder.shared[((threadIdx.z*36) + 28)]))

compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 28)]))

compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 28)]))

compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 28)]))

compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 28)]))

compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 28)]))

compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 28)]))

compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 28)]))

compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 2)]))

compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 2)]))

compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 2)]))

compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 2)]))

compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 2)]))

compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 2)]))

compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 2)]))

compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 2)]))

compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 11)]))

compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 11)]))

compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 11)]))

compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 11)]))

compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 11)]))

compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 11)]))

compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 11)]))

compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 11)]))

compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 20)]))

compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 20)]))

compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 20)]))

compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 20)]))

compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 20)]))

compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 20)]))

compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 20)]))

compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 20)]))

compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 2)]*placeholder.shared[((threadIdx.z*36) + 29)]))

compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 29)]))

compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 29)]))

compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 29)]))

compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 29)]))

compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 29)]))

compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 29)]))

compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 29)]))

compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 3)]))

compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 3)]))

compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 3)]))

compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 3)]))

compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 3)]))

compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 3)]))

compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 3)]))

compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 3)]))

compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 12)]))

compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 12)]))

compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 12)]))

compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 12)]))

compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 12)]))

compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 12)]))

compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 12)]))

compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 12)]))

compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 21)]))

compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 21)]))

compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 21)]))

compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 21)]))

compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 21)]))

compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 21)]))

compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 21)]))

compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 21)]))

compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 18)]*placeholder.shared[((threadIdx.z*36) + 30)]))

compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 30)]))

compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 30)]))

compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 30)]))

compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 30)]))

compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 30)]))

compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 30)]))

compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 30)]))

compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 4)]))

compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 4)]))

compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 4)]))

compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 4)]))

compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 4)]))

compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 4)]))

compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 4)]))

compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 4)]))

compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 13)]))

compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 13)]))

compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 13)]))

compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 13)]))

compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 13)]))

compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 13)]))

compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 13)]))

compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 13)]))

compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 22)]))

compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 22)]))

compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 22)]))

compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 22)]))

compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 22)]))

compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 22)]))

compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 22)]))

compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 22)]))

compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 19)]*placeholder.shared[((threadIdx.z*36) + 31)]))

compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 31)]))

compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 31)]))

compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 31)]))

compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 31)]))

compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 31)]))

compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 31)]))

compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 31)]))

compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 5)]))

compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 5)]))

compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 5)]))

compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 5)]))

compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 5)]))

compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 5)]))

compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 5)]))

compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 5)]))

compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 14)]))

compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 14)]))

compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 14)]))

compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 14)]))

compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 14)]))

compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 14)]))

compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 14)]))

compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 14)]))

compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 23)]))

compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 23)]))

compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 23)]))

compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 23)]))

compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 23)]))

compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 23)]))

compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 23)]))

compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 23)]))

compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 20)]*placeholder.shared[((threadIdx.z*36) + 32)]))

compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 32)]))

compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 32)]))

compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 32)]))

compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 32)]))

compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 32)]))

compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 32)]))

compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 32)]))

compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 6)]))

compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 6)]))

compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 6)]))

compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 6)]))

compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 6)]))

compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 6)]))

compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 6)]))

compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 6)]))

compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 15)]))

compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 15)]))

compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 15)]))

compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 15)]))

compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 15)]))

compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 15)]))

compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 15)]))

compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 15)]))

compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 24)]))

compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 24)]))

compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 24)]))

compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 24)]))

compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 24)]))

compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 24)]))

compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 24)]))

compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 24)]))

compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 36)]*placeholder.shared[((threadIdx.z*36) + 33)]))

compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 54)]*placeholder.shared[((threadIdx.z*36) + 33)]))

compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 72)]*placeholder.shared[((threadIdx.z*36) + 33)]))

compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 90)]*placeholder.shared[((threadIdx.z*36) + 33)]))

compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 108)]*placeholder.shared[((threadIdx.z*36) + 33)]))

compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 126)]*placeholder.shared[((threadIdx.z*36) + 33)]))

compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 144)]*placeholder.shared[((threadIdx.z*36) + 33)]))

compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 162)]*placeholder.shared[((threadIdx.z*36) + 33)]))

compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 7)]))

compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 7)]))

compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 7)]))

compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 7)]))

compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 7)]))

compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 7)]))

compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 7)]))

compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 7)]))

compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 16)]))

compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 16)]))

compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 16)]))

compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 16)]))

compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 16)]))

compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 16)]))

compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 16)]))

compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 16)]))

compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 25)]))

compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 25)]))

compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 25)]))

compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 25)]))

compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 25)]))

compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 25)]))

compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 25)]))

compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 25)]))

compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 37)]*placeholder.shared[((threadIdx.z*36) + 34)]))

compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 55)]*placeholder.shared[((threadIdx.z*36) + 34)]))

compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 73)]*placeholder.shared[((threadIdx.z*36) + 34)]))

compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 91)]*placeholder.shared[((threadIdx.z*36) + 34)]))

compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 109)]*placeholder.shared[((threadIdx.z*36) + 34)]))

compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 127)]*placeholder.shared[((threadIdx.z*36) + 34)]))

compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 145)]*placeholder.shared[((threadIdx.z*36) + 34)]))

compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 163)]*placeholder.shared[((threadIdx.z*36) + 34)]))

compute[0] = (compute[0] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 8)]))

compute[1] = (compute[1] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 8)]))

compute[2] = (compute[2] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 8)]))

compute[3] = (compute[3] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 8)]))

compute[4] = (compute[4] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 8)]))

compute[5] = (compute[5] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 8)]))

compute[6] = (compute[6] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 8)]))

compute[7] = (compute[7] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 8)]))

compute[8] = (compute[8] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 17)]))

compute[9] = (compute[9] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 17)]))

compute[10] = (compute[10] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 17)]))

compute[11] = (compute[11] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 17)]))

compute[12] = (compute[12] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 17)]))

compute[13] = (compute[13] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 17)]))

compute[14] = (compute[14] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 17)]))

compute[15] = (compute[15] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 17)]))

compute[16] = (compute[16] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 26)]))

compute[17] = (compute[17] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 26)]))

compute[18] = (compute[18] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 26)]))

compute[19] = (compute[19] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 26)]))

compute[20] = (compute[20] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 26)]))

compute[21] = (compute[21] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 26)]))

compute[22] = (compute[22] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 26)]))

compute[23] = (compute[23] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 26)]))

compute[24] = (compute[24] + (pad_temp.shared[(threadIdx.x + 38)]*placeholder.shared[((threadIdx.z*36) + 35)]))

compute[25] = (compute[25] + (pad_temp.shared[(threadIdx.x + 56)]*placeholder.shared[((threadIdx.z*36) + 35)]))

compute[26] = (compute[26] + (pad_temp.shared[(threadIdx.x + 74)]*placeholder.shared[((threadIdx.z*36) + 35)]))

compute[27] = (compute[27] + (pad_temp.shared[(threadIdx.x + 92)]*placeholder.shared[((threadIdx.z*36) + 35)]))

compute[28] = (compute[28] + (pad_temp.shared[(threadIdx.x + 110)]*placeholder.shared[((threadIdx.z*36) + 35)]))

compute[29] = (compute[29] + (pad_temp.shared[(threadIdx.x + 128)]*placeholder.shared[((threadIdx.z*36) + 35)]))

compute[30] = (compute[30] + (pad_temp.shared[(threadIdx.x + 146)]*placeholder.shared[((threadIdx.z*36) + 35)]))

compute[31] = (compute[31] + (pad_temp.shared[(threadIdx.x + 164)]*placeholder.shared[((threadIdx.z*36) + 35)]))

}

}

tensor[(((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x)] = max(((compute[0]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 224)] = max(((compute[1]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 448)] = max(((compute[2]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 672)] = max(((compute[3]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 896)] = max(((compute[4]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 1120)] = max(((compute[5]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 1344)] = max(((compute[6]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 1568)] = max(((compute[7]*placeholder[(threadIdx.z*4)]) + placeholder[(threadIdx.z*4)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50176)] = max(((compute[8]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50400)] = max(((compute[9]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50624)] = max(((compute[10]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 50848)] = max(((compute[11]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51072)] = max(((compute[12]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51296)] = max(((compute[13]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51520)] = max(((compute[14]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 51744)] = max(((compute[15]*placeholder[((threadIdx.z*4) + 1)]) + placeholder[((threadIdx.z*4) + 1)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 100352)] = max(((compute[16]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 100576)] = max(((compute[17]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 100800)] = max(((compute[18]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101024)] = max(((compute[19]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101248)] = max(((compute[20]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101472)] = max(((compute[21]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101696)] = max(((compute[22]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 101920)] = max(((compute[23]*placeholder[((threadIdx.z*4) + 2)]) + placeholder[((threadIdx.z*4) + 2)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 150528)] = max(((compute[24]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 150752)] = max(((compute[25]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 150976)] = max(((compute[26]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151200)] = max(((compute[27]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151424)] = max(((compute[28]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151648)] = max(((compute[29]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 151872)] = max(((compute[30]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

tensor[((((((blockIdx.y*112) + blockIdx.x) + (threadIdx.z*12544))*16) + threadIdx.x) + 152096)] = max(((compute[31]*placeholder[((threadIdx.z*4) + 3)]) + placeholder[((threadIdx.z*4) + 3)]), 0.000000f)

}

将cuDNN用于卷积层

可以使用cuDNN将卷积内核替换为cuDNN。将选项“ -libs = cudnn”附加到目标字符串。

net, params = testing.create_workload(simple_net)

target = "cuda -libs=cudnn"  # use cudnn for convolution

lib = relay.build_module.build(net, target, params=params)

ctx = tvm.context(target, 0)

data = np.random.uniform(-1, 1, size=data_shape).astype("float32")

module = runtime.GraphModule(lib["default"](ctx))

module.set_input("data", data)

module.run()

out_shape = (batch_size, out_channels, 224, 224)

out = module.get_output(0, tvm.nd.empty(out_shape))

out_cudnn = out.asnumpy()

如果使用cuDNN,则Relay无法将卷积与其后的图层融合在一起。层融合发生在TVM内部表示(IR)级别。Relay将外部库视为黑匣子,无法与TVM IR融合。

下面的伪代码显示cuDNN卷积+偏差加+批处理范数+ ReLU分为两个计算阶段,一个阶段用于cuDNN调用,另一个阶段用于其余操作。

// attr [y] storage_scope = "global"

allocate y[float32 * 802816]

produce y {

// attr [0] extern_scope = 0

tvm_call_packed("tvm.contrib.cudnn.conv2d.forward", 1, 0, 1, 1, 1, 1, 1, 1, 1, tvm_stack_make_array(placeholder, tvm_stack_make_shape(1, 3, 224, 224), 0, 4, 0.000000f, 0), tvm_stack_make_array(placeholder, tvm_stack_make_shape(16, 3, 3, 3), 0, 4, 0.000000f, 0), tvm_stack_make_array(y, tvm_stack_make_shape(1, 16, 224, 224), 0, 4, 0.000000f, 0))

}

produce tensor {

// attr [iter_var(blockIdx.x, , blockIdx.x)] thread_extent = 256

// attr [iter_var(threadIdx.x, , threadIdx.x)] thread_extent = 512

for (ax0.ax1.fused.ax2.fused.ax3.fused.outer, 0, 7) {

if (likely(((blockIdx.x*512) < ((802816 - (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072)) - threadIdx.x)))) {

tensor[(((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/802816)*802816) + (((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/224) % 224)*224) + ((((blockIdx.x*64) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*32)) % 224))) + ((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)*50176))] = max(((y[(((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/802816)*802816) + (((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/224) % 224)*224) + ((((blockIdx.x*64) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*32)) % 224))) + ((((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)*50176))]*placeholder[(((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)]) + placeholder[(((((blockIdx.x*512) + threadIdx.x) + (ax0.ax1.fused.ax2.fused.ax3.fused.outer*131072))/50176) % 16)]), 0.000000f)

}

}

}

验证结果

可以检查两次运行的结果是否匹配。

tvm.testing.assert_allclose(out_cuda, out_cudnn, rtol=1e-5)

结论

本文介绍了cuDNN与Relay的用法。也支持cuBLAS。如果启用了cuBLAS,将在完全连接的层(relay.dense)中使用。要使用cuBLAS,将目标字符串设置为“ cuda -libs = cublas”。可以将cuDNN和cuBLAS与“ cuda -libs = cudnn,cublas”一起使用。

对于ROCm后端,支持MIOpen和rocBLAS。可以通过目标“ rocm -libs = miopen,rocblas”启用。

能够使用外部库是很棒的,需要牢记一些注意事项。

首先,使用外部库,可能会限制对TVM和Relay的使用。例如,MIOpen目前仅支持NCHW布局和fp32数据类型,不能在TVM中使用其他布局或数据类型。

其次,更重要的是,外部库限制了在图形编译过程中算子融合的可能性,如上所述。TVM和Relay旨在通过联合算子级别和图形级别优化来在各种硬件上实现最佳性能。应该继续为TVM和Relay开发更好的优化方法,在必要时使用外部库作为回退到现有实现的一种好方法。

Relay外部库使用的更多相关文章

  1. Qt 添加外部库文件(四种方法)

    Qt添加外部库文件, 一种就是直接加库文件的绝对路劲,这种方法简单,但是遇到多个库文件的时候,会很麻烦,而且,如果工程移动位置以后还需要重新配置 另一种就是相对路径了,不过Qt 编译的文件会在一个单独 ...

  2. [Cocos2d-x]解决Android平台ndk-build时不自动删除外部库

    参考链接: http://blog.chinaunix.net/uid-26009923-id-3430612.html http://hi.baidu.com/hpyfei/item/52a2b21 ...

  3. [WebGL入门]十,矩阵计算和外部库

    注:文章译自http://wgld.org/,原作者杉本雅広(doxas),文章中假设有我的额外说明,我会加上[lufy:],另外,鄙人webgl研究还不够深入,一些专业词语,假设翻译有误,欢迎大家指 ...

  4. 【转】QT 添加外部库文件

    转自:Qt 添加外部库文件 LIBS += D:\Code\Opengltest\OpenGL32.Lib D:\Code\Opengltest\GlU32.Lib # 直接加绝对路径 LIBS += ...

  5. ios开发中用过的一些外部库总结 cocoapods list

    下面几个库是在之前的一个ios app开发中使用过的一些外部库: 1. zbar :2. shakebox :3. processbar :4. tableviewcontroller :新版的sta ...

  6. linux下编译ffmpeg 引入外部库x264

    Found no assembler Minimum version is nasm-2.13 If you really want to compile without asm, configure ...

  7. vs2012 MinGW 编译ffmeg 引用外部库libx264,librtmp

    VS2012如何编译ffmpeg前面已经有文章讲过,本来主要讲述如何引用外部库libx264,librtmp, ffmpeg版本是3.0.2. 1. 下载x264源文件并编译 源码地址是http:// ...

  8. GNU编译器学习 --> 如何链接外部库【Linking with external libraries】

    库也就是我们常说的library,一个库是若干个已经编译过的目标文件(.obj)的集合,它可以被链接到程序里.那么我们最常见的使用就是,我们在编程时会调用一些函数,这些函数别人已经写好了,它就放在库里 ...

  9. python离线安装外部库(第三方库)

    在官网下好外部库,解压后,点击解压后的文件夹,按住shift 右击在命令行中执行 输入 python setup.py install

随机推荐

  1. 13- APP接口测试以及postman使用

    postman安装与操作 ---------------------- 接口操作图片 -------------------- 一.postman操作key值:来源于聚合   请求-->聚合-- ...

  2. jQuery监控键盘事件

    <!doctype html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  3. 【SpringBoot】SpringBoot 处理后端返回的小数(全局配置 + 定制化配置)

    一.抛出问题: 现在的项目中,存在这样的几个问题: 问题一.数据库存的数据类型是BigDecimal,或者代码中计算需要返回BigDecimal的值,由于BigDecimal返回给前端可能存在精度丢失 ...

  4. hdu3786 找出直系亲属 水题

    题意:找出直系亲属Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  5. [LeetCode]丑数 II&C++中priority_queue和unordered_set的使用

    [LeetCode]丑数 II&C++中priority_queue和unordered_set的使用 考虑到现实因素,LeetCode每日一题不再每天都写题解了(甚至有可能掉题目?--)但对 ...

  6. 使用jenkins一键打包发布vue项目

    jenkins的安装 Jenkins是一款开源 CI&CD 软件,用于自动化各种任务,包括构建.测试和部署软件. Jenkins 支持各种运行方式,可通过系统包.Docker 或者通过一个独立 ...

  7. sql常识-RIGHT JOIN

    SQL RIGHT JOIN 关键字 RIGHT JOIN 关键字会右表 (table_name2) 那里返回所有的行,即使在左表 (table_name1) 中没有匹配的行. RIGHT JOIN ...

  8. LinkedList作为栈和队列的使用

    最近在LeekCode用java写一些算法时,经常遇到要使用栈和队列结构,使用栈的话,Stack已经不被推荐使用了,所以栈和队列我们通常都是用LinkedList这种双链表结构实现.Linkedlis ...

  9. 【转】java-selenium三种等待方式

    方式1: 线程等待:Thread.sleep(xxxx) 只要在case中加入sleep就会强制等待设置的时间后才会执行之后的命令,这种等待一般适用于调试脚本的时候. java代码: //等待3秒 T ...

  10. 服务器开发基础-Tcp/Ip网络模型—完成端口(Completion Port)模型

    本文对于初学网络编程的极为友好,文中所有代码全部基于C语言实现,文中见解仅限于作者对于完成端口的初步认识,由于作者才疏学浅,出现的错误和纰漏,麻烦您一定要指出来,咱们共同进步.谢谢!!! 完成端口(c ...