一说到数据孤岛,所有技术人都不陌生。在 IT 发展过程中,企业不可避免地搭建了各种业务系统,这些系统独立运行且所产生的数据彼此独立封闭,使得企业难以实现数据共享和融合,并形成了"数据孤岛"。

 

由于数据散落在不同数据库、消息队列中,计算平台直接访问这些数据时可能遇到可用性、传输延迟,甚至系统吞吐问题。如果上升到业务层面,我们会发现这些场景随时都会遇到:汇总业务交易数据、旧系统数据迁移到新系统中、不同系统数据整合。因此,为了能让数据更加实时、高效的融合并支持各业务场景,企业通常选择使用各种 ETL 工具以达到上述目的。

 

因此,我们可以看到企业自行探索的各种解决方案,比如使用自定义脚本,或使用服务总线(Enterprise Service Bus,ESB)和消息队列(Message Queue,MQ),比如使用企业应用集成(Enterprise application integration,EAI)通过底层结构的设计来横贯企业异构系统、应用、数据源等,实现数据的无缝共享与交换。

 

尽管以上手段都算实现了有效实时处理,但也给企业带来更难决断的选择题:实时,但不可扩展,或可扩展。但批处理。与此同时,随着数据技术、业务需求的不断发展,企业对 ETL 的要求也不断提升:

  • 除了支持事务性数据,也需要能够处理诸如 Log、Metric 等类型越来越丰富的数据源;
  • 批处理速度需要进一步提升;
  • 底层技术架构需要支持实时处理,并向以事件为中心演进。

可以看到,流处理/实时处理平台作为事件驱动交互的基石。它向企业提供了全局化的数据/事件链接、即时数据访问、单一系统统管全域数据以及持续索引/查询能力。也正是面对以上技术与业务需求,Kafka 提供了一个全新思路:

  • 作为实时、可扩展消息总线,不再需要企业应用集成;
  • 为所有消息处理目的地提供流数据管道;
  • 作为有状态流处理微服务的基础构建块。

我们以购物网站数据分析场景为例,为了实现精细化运营,运营团队以及产品经理需要将众多用户行为、业务数据以及其他数据数据进行汇总,这其中包括但不限于:

  1. 用户各类点击、浏览、加购、登陆等行为数据;
  2. 基础日志数据;
  3. APP 主动上传数据;
  4. 来自 db 中的数据;
  5. 其他。

这些数据汇集到 Kafka,然后数据分析工具统一从 Kafka 中获取所需的数据进行分析计算。由于 Kafka 采集的数据源非常多且格式也各种各样。在数据进入下游数据分析工具之前,需要进行数据清洗,例如过滤、格式化。在这里研发团队有两个选择:(1)写代码去消费 Kafka 中的消息,清洗完成后发送到目标 Kafka Topic。(2)使用组件进行数据清洗转换,例如:Logstash、Kafka Stream、Kafka Connector、Flink等。

 

看在这里,大家肯定会有疑问:Kafka Stream 作为流式处理类库,直接提供具体的类给开发者调用,整个应用的运行方式主要由开发者控制,方便使用和调试。这有什么问题吗?虽然以上方法确实能够很快解决问题,但其问题也显而易见。

  • 研发团队需要自行编写代码,且需要后期持续维护,运维成本较大;
  • 对于很多轻量或简单计算需求,引入一个全新组件的技术成本过高,需要进行技术选型;
  • 在某组件选定后,需要研发团队进行学习并持续维护,这就带来了不可预期的学习成本、维护成本。



 

为了解决问题,我们提供了一个更加轻量的解决方案:Kafka ETL 功能。

 

使用 Kafka ETL 功能后,只需通过 Kafka 控制台进行简单配置,在线写一段清洗代码,即可实现 ETL 的目的。可能存在的高可用、维护等问题,完全交由 Kafka。

 

那么接下来,我们为大家展示如何快速的创建数据 ETL 任务,仅需 3 步即可。

Step 1 : 创建任务

选择 Kafka 来源实例、来源 Topic,以及对应的选择 Kafka 目标实例、目标 Topic。并配置消息初始位置、失败处理以及创建资源方式。

 



Step 2:编写ETL主逻辑

我们可以选择 Python3 作为函数语言。

 

与此同时,这里提供了多种数据清洗、数据转化模板,比如规则过滤、字符串替换、添加前/后缀等常用函数。

 

Step 3:设置任务运行、异常参数配置,并执行



 

可以看到,无需额外的组件接入或者复杂的配置,更轻量、更低成本的 Kafka ETL 仅需 3-5 步的可视化配置,即可开始 ETL 任务。对于数据 ETL 要求相对简单的团队而言,Kafka ETL 成为最佳选择,可以将更多精力放在业务研发上。

 

如此轻松便捷的 ETL 功能,真的不容错过!告别繁琐的脚本,告别组件选型与接入,立即扫码或点击链接(https://www.aliyun.com/product/kafka?utm_content=se_1009650951),体验更加轻松的 ETL 吧!

 

告别Kafka Stream,让轻量级流处理更加简单的更多相关文章

  1. 《Kafka Stream》调研:一种轻量级流计算模式

    原文链接:https://yq.aliyun.com/articles/58382 摘要: 流计算,已经有Storm.Spark,Samza,包括最近新起的Flink,Kafka为什么再自己做一套流计 ...

  2. 流式处理的新贵 Kafka Stream - Kafka设计解析(七)

    原创文章,转载请务必将下面这段话置于文章开头处. 本文转发自技术世界,原文链接 http://www.jasongj.com/kafka/kafka_stream/ Kafka Stream背景 Ka ...

  3. 流式计算新贵Kafka Stream设计详解--转

    原文地址:https://mp.weixin.qq.com/s?__biz=MzA5NzkxMzg1Nw==&mid=2653162822&idx=1&sn=8c4611436 ...

  4. Kafka设计解析(七)- Kafka Stream

    本文介绍了Kafka Stream的背景,如Kafka Stream是什么,什么是流式计算,以及为什么要有Kafka Stream.接着介绍了Kafka Stream的整体架构,并行模型,状态存储,以 ...

  5. Kafka设计解析(七)Kafka Stream

    转载自 技术世界,原文链接 Kafka设计解析(七)- Kafka Stream 本文介绍了Kafka Stream的背景,如Kafka Stream是什么,什么是流式计算,以及为什么要有Kafka ...

  6. [翻译]Kafka Streams简介: 让流处理变得更简单

    Introducing Kafka Streams: Stream Processing Made Simple 这是Jay Kreps在三月写的一篇文章,用来介绍Kafka Streams.当时Ka ...

  7. Kafka Streams简介: 让流处理变得更简单

    Introducing Kafka Streams: Stream Processing Made Simple 这是Jay Kreps在三月写的一篇文章,用来介绍Kafka Streams.当时Ka ...

  8. Kafka Stream

    Kafka Stream是Apache Kafka从0.10版本引入的一个新Feature(当前:1.0.0-rc0,参见:https://github.com/apache/kafka/releas ...

  9. jdk8系列三、jdk8之stream原理及流创建、排序、转换等处理

    一.为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX ...

随机推荐

  1. XCTF_ics-07

    这道题确实也卡了很久 垮了垮了 话不多说直接找到view source.php审代码吧 先看这段 要你: (1)floatval($ _ GET [id])!=='1' //浮点不为1 (2)subs ...

  2. MySQL Mac 终端环境变量配置

    MySQL Mac 终端环境变量配置 这里安装的是mysql-8.0.26-macos11-x86_64,M1Mac,原本打算安装arm64版本,但一直安装不了,就装了x86版本 安装完成MySQL之 ...

  3. kubebuilder实战之二:初次体验kubebuilder

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  4. 【编程语言】Matlab 学习记录

    title: Matlab Learning Record date: 2020-05-23 20:11:26 author: liudongdong1 img: https://gitee.com/ ...

  5. 异步编程async体会

    namespace 异步编程{ class Program { static void Main(string[] args) { Console.WriteLine("mian this ...

  6. TiDB基本简介

    一.TiDB整体架构 与传统的单机数据库相比,TiDB具有以下优势: 纯分布式架构,拥有良好的扩展性,支持弹性的扩缩容 支持SQL,对外暴露MySQL的网络协议,并兼容大多数MySQL的语法,在大多数 ...

  7. 给MediaWiki增加看板娘

    我们想给我们的mediawiki增加个像我博客里这样的看板娘,那么怎么做才好呢? 其实很简单,只要在相应的模板文件里增加指定代码就好了! 修改模板文件 找到模板文件skins/Vector/Vecto ...

  8. Python和java的选择

    它是什么? Java是一种通用的面向对象的编程语言,主要用于开发从移动应用程序到Web到企业应用程序的各种应用程序. Python是一种高级的面向对象的编程语言,主要用于Web开发,人工智能,机器学习 ...

  9. (原创)[C#] DataTable排序扩展方法

    一,前言 DataTable的应用极其广泛,对DataTable进行排序也有很多方式,每种的实现方式都不难,但是使用起来却比较繁琐,所以本人便写了一个扩展方法,专门对DataTable进行操作. 本篇 ...

  10. 并发编程之:CountDownLatch

    大家好,我是小黑,一个在互联网苟且偷生的农民工. 先问大家一个问题,在主线程中创建多个线程,在这多个线程被启动之后,主线程需要等子线程执行完之后才能接着执行自己的代码,应该怎么实现呢? Thread. ...