定义

解释器模式是类的行为型模式,给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器,客户端可以使用这个解释器来解释这个语言中的句子

意图

给定一个语言,定义它的文法表示,并定义一个解释器,这个解释器使用该标识来解释语言中的句子

主要解决问题

对于一些固定文法构建一个解释句子的解释器

优缺点

优点:

  • 扩展性好,灵活
  • 增加了新的解释表达式的方式
  • 易于实现简单的文法

缺点:

  • 使用场景较少
  • 对于复杂的文法比较难以维护
  • 会引起类膨胀
  • 采用递归调用方法,效率低

结构



涉及的角色:

  • 抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口,这个接口主要是一个interpret方法,称作解释操作
  • 终结符表达式(TerminalExpression)角色:这是一个具体角色
    • 实现了抽象表达式角色要求的接口,主要是一个interpret方法
    • 文法中的每一个终结符都有一个具体终结表达式与之相对应
  • 非终结符表达式(NonterminalExpression)角色:这是一个具体角色
    • 文法中的每一条规则R=R1R2...Rn都需要一个具体的非终结符表达式类
    • 对每一个R=R1R2...Rn中的符号都持有一个静态类型为Expression的实例变量
    • 实现解释操作interpret方法,解释操作以递归方式调用上面所提到的代表R1R2...Rn中的各个符号的实例变量
  • 客户端(Client)角色:建造一个抽象语法树,调用解释操作
  • 环境(Context)角色:提供解释器之外的一些全局信息,比如变量的真实量值等

示例

抽象表达式角色:

/**
* 这个抽象类代表终结类和非终结类的抽象化
*/
public abstract class Expression { /** 以环境类为准,本方法解释给定的任何一个表达式 */
public abstract boolean interpret(Context ctx); /** 检验两个表达式在结构上是否相同 */
public abstract boolean equals(Object o); /** 返回表达式的hashCode */
public abstract int hashCode(); /** 将表达式转换为字符串 */
public abstract String toString();
}

终结表达式角色:



一个Constant对象代表一个布尔常量

public class Constant extends Expression {
private boolean value; public Constant(boolean value) {
this.value = value;
} /** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return value;
} /** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof Constant) {
return this.value = ((Constant)o).value;
}
return false;
} /** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
} /** 将表达式转换为字符串 */
@Override
public String toString(){
return new Boolean(value).toString();
}
}

一个Variable对象代表一个有名变量

public class Variable extends Expression {

    private String name;

    public Variable(String name) {
this.name = name;
} /** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return ctx.lookup(this);
} /** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof Variable) {
return this.name.equals(((Variable)o).name);
}
return false;
} /** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
} /** 将表达式转换为字符串 */
@Override
public String toString() {
return name;
}
}

非终结表达式角色:



表示由两个布尔表达式通过逻辑与操作给出一个新的布尔表达式的操作:

public class And extends Expression {

    private Expression left, right;

    public And(Expression left, Expression right) {
this.left = left;
this.right = right;
} /** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return left.interpret(ctx) && right.interpret(ctx);
} /** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof And) {
return this.left.equals(((And)o).left) && this.right.equals(((And)o).right);
}
return false;
} /** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
} /** 将表达式转换为字符串 */
@Override
public String toString() {
return "(" + left.toString() + " AND " + right.toString() + ")";
}
}

表示由两个布尔表达式通过逻辑或操作给出一个新的布尔表达式的操作:

public class Or extends Expression {

    private Expression left, right;

    public Or(Expression left, Expression right) {
this.left = left;
this.right = right;
} /** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return left.interpret(ctx) || right.interpret(ctx);
} /** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof Or) {
return this.left.equals(((Or)o).left) && this.right.equals(((Or)o).right);
}
return false;
} /** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
} /** 将表达式转换为字符串 */
@Override
public String toString() {
return "(" + left.toString() + " OR " + right.toString() + ")";
}
}

表示由一个布尔表达式通过逻辑非操作给出一个新的布尔表达式的操作:

public class Not extends Expression {

    private Expression exp;

    public Not(Expression exp) {
this.exp = exp;
} /** 解释操作 */
@Override
public boolean interpret(Context ctx) {
return !exp.interpret(ctx);
} /** 检验两个表达式在结构上是否相同 */
@Override
public boolean equals(Object o) {
if (o != null && o instanceof Not) {
return this.exp.equals(((Not)o).exp);
}
return false;
} /** 返回表达式的hashCode */
@Override
public int hashCode() {
return (this.toString()).hashCode();
} /** 将表达式转换为字符串 */
@Override
public String toString() {
return "(Not " + exp.toString() + ")";
}
}

环境类定义出从变量到布尔值的一个映射:

public class Context {

    private HashMap map = new HashMap();

    public void assign(Variable var, boolean value) {
map.put(var, new Boolean(value));
} public boolean lookup(Variable var) {
Boolean value = (Boolean) map.get(var);
if (value == null) {
throw new IllegalArgumentException();
}
return value.booleanValue();
}
}

客户端角色:

public class Client {
private static Context ctx;
private static Expression exp; public static void main(String[] args) {
ctx = new Context();
Variable x = new Variable("x");
Variable y = new Variable("y");
Constant c = new Constant(true);
ctx.assign(x, false);
ctx.assign(y, true);
exp = new Or(new And(c, x), new And(y, new Not(x)));
System.out.println("x= " + x.interpret(ctx));
System.out.println("y= " + y.interpret(ctx));
System.out.println(exp.toString() + " = " + exp.interpret(ctx));
}
}

适用情况

  • 系统有一个简单的语言可供解释
  • 一些重复发生的问题可以用这种简单的语言表达
  • 效率不是主要考虑的问题

简单的介绍一下Java设计模式:解释器模式的更多相关文章

  1. Java设计模式----解释器模式

    计算器中,我们输入“20 + 10 - 5”,计算器会得出结果25并返回给我们.可你有没有想过计算器是怎样完成四则运算的?或者说,计算器是怎样识别你输入的这串字符串信息,并加以解析,然后执行之,得出结 ...

  2. JAVA 设计模式 解释器模式

    用途 解释器模式 (Interpreter) 定义一个语言,定义它的文法的一种表示. 并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 解释器模式是一种行为型模式. 结构

  3. Java设计模式—解释器模式&迭代器模式简介

       解释器模式在实际的系统开发中使用得非常少,因为它会引起效率.性能以及维护等问题,一般在大中型的框架型项目能够找到它的身影,如一些数据分析工具.报表设计工具.科学计算工具等,若你确实遇到" ...

  4. Java设计模式-解释器模式(Interpreter)

    解释器模式是我们暂时的最后一讲,一般主要应用在OOP开发中的编译器的开发中,所以适用面比较窄. Context类是一个上下文环境类,Plus和Minus分别是用来计算的实现,代码如下: public ...

  5. 【设计模式】Java设计模式 - 命令模式

    Java设计模式 - 命令模式 生命不息,写作不止 继续踏上学习之路,学之分享笔记 总有一天我也能像各位大佬一样 一个有梦有戏的人 @怒放吧德德 分享学习心得,欢迎指正,大家一起学习成长! 目录 Ja ...

  6. Java设计模式——组合模式

    JAVA 设计模式 组合模式 用途 组合模式 (Component) 将对象组合成树形结构以表示“部分-整体”的层次结构.组合模式使得用户对单个对象和组合对象的使用具有唯一性. 组合模式是一种结构型模 ...

  7. Java设计模式-代理模式之动态代理(附源代码分析)

    Java设计模式-代理模式之动态代理(附源代码分析) 动态代理概念及类图 上一篇中介绍了静态代理,动态代理跟静态代理一个最大的差别就是:动态代理是在执行时刻动态的创建出代理类及其对象. 上篇中的静态代 ...

  8. Java设计模式——外观模式

    JAVA 设计模式 外观模式 用途 外观模式 (Facade) 为子系统中的一组接口提供一个一致的界面,此模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 外观模式是一种结构型模式. 结构

  9. 【设计模式】Java设计模式 -工厂模式

    [设计模式]Java设计模式 -工厂模式 不断学习才是王道 继续踏上学习之路,学之分享笔记 总有一天我也能像各位大佬一样 一个有梦有戏的人 @怒放吧德德 分享学习心得,欢迎指正,大家一起学习成长! 目 ...

随机推荐

  1. 从零开始搞后台管理系统(1)——shin-admin

      shin 的读音是[ʃɪn],谐音就是行,寓意可行的后台管理系统,shin-admin 的特点是: 站在巨人的肩膀上,依托Umi 2.Dva 2.Ant Design 3和React 16.8搭建 ...

  2. SpringBoot读取资源目录下的文件

    需要读取resources目录下的文件,那么方法如下: 假设在资源目录下的template目录下有一个文件a.txt,获取到文件流的方式 InputStream stream = this.getCl ...

  3. AOP面试造火箭始末

    本文已整理致我的github地址,欢迎大家 star 支持一下 这是一个困扰我司由来已久的难题,Dubbo 了解过吧,对外提供的服务可能有多个方法,一般我们为了不给调用方埋坑,会在每个方法里把所有异常 ...

  4. 【知识点】 gcc和g++的联系和区别

    目前(2020-09)GCC 编译器已经更新至 10.2版本,其功能也由最初仅能编译 C 语言,扩增至可以编译多种编程语言,其中就包括 C++ . 除此之外,当下的 GCC 编译器还支持编译 Go.O ...

  5. 剑指 Offer 64. 求1+2+…+n + 递归

    剑指 Offer 64. 求1+2+-+n Offer_64 题目描述 题解分析 使用&&逻辑短路规则来终止循环 package com.walegarrett.offer; /** ...

  6. HDOJ-1213(简单并查集)

    How many tables HDOJ-1213 #include<iostream> #include<cstring> #include<cstdio> #i ...

  7. 【RocketMQ源码分析】深入消息存储(1)

    最近在学习RocketMQ相关的东西,在学习之余沉淀几篇笔记. RocketMQ有很多值得关注的设计点,消息发送.消息消费.路由中心NameServer.消息过滤.消息存储.主从同步.事务消息等等. ...

  8. python学习之类的装饰器进阶版

    装饰器可以修饰函数,同样,也可以修饰类 装饰器 def deco(func):    print('======>被修饰的')return func 装饰器装饰函数的方式,语法糖 @decode ...

  9. mysql最权威的总结

    1.数据库操作 create database person charset utf8; -- 创建数据库show DATABASES; -- 查看数据库drop database person; - ...

  10. springcloud知识点总结

    一.SpringCloud面试题口述1.SpringCloud和DubboSpringCloud和Dubbo都是现在主流的微服务架构SpringCloud是Apache旗下的Spring体系下的微服务 ...