python基础(补充):python三大器之装饰器
函数作为返回值
高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。
我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:
def calc_sum(*args):
i = 0
for n in args:
i = i + n
return i
但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:
def lazy_sum(*args):
def sum():
i = 0
for n in args:
i = i + n
return i
return sum
当我们调用lazy_sum()
时,返回的并不是求和结果,而是求和函数:
f = lazy_sum(1, 3, 5, 7, 9)
print(f)
# <function lazy_sum.<locals>.sum at 0x000002C5C32328C8>
调用函数f
时,才真正计算求和的结果:
print(f())
# 25
在这个例子中,我们在函数lazy_sum
中又定义了函数sum
,并且,内部函数sum
可以引用外部函数lazy_sum
的参数和局部变量,当lazy_sum
返回函数sum
时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
请再注意一点,当我们调用lazy_sum()
时,每次调用都会返回一个新的函数,即使传入相同的参数:
f1 = lazy_sum(1, 3, 5, 7, 9)
f2 = lazy_sum(1, 3, 5, 7, 9)
print(f1 == f2)
# False
f1()
和f2()
的调用结果是互不影响的。
闭包
返回的函数在其定义内部引用了局部变量args
,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。
另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()
才执行。我们来看一个例子:
def count():
fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs
f1, f2, f3 = count()
在上面的例子中,每次循环,都创建了一个新的函数,然后,把创建的3个函数都返回了。
你可能认为调用f1()
,f2()
和f3()
结果应该是1
,4
,9
,但实际结果是:
print(f1())
# 9
print(f2())
# 9
print(f3())
# 9
全部都是9
!原因就在于返回的函数引用了变量i
,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i
已经变成了3
,因此最终结果为9
。
返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:
def count():
def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs
f1, f2, f3 = count()
再看看结果:
print(f1())
# 1
print(f2())
# 4
print(f3())
# 9
缺点是代码较长,可利用lambda函数缩短代码。
由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。
def now():
print('2021-04-17')
f = now
f()
__name__
属性
函数对象有一个__name__
属性,可以拿到函数的名字:
print(now.__name__) # now
print(f.__name__) # now
装饰器
现在,假设我们要增强now()
函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()
函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
decorator的本质就是闭包。所以,我们要定义一个能打印日志的decorator,可以定义如下:
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
观察上面的log
,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
@log
def now():
print('2021-04-17')
调用now()
函数,不仅会运行now()
函数本身,还会在运行now()
函数前打印一行日志:
now()
# call now():
# 2021-04-17
把@log
放到now()
函数的定义处,相当于执行了语句:
now = log(now)
由于log()
是一个decorator,返回一个函数,所以,原来的now()
函数仍然存在,只是现在同名的now
变量指向了新的函数,于是调用now()
将执行新函数,即在log()
函数中返回的wrapper()
函数。
wrapper()
函数的参数定义是(*args, **kw)
,因此,wrapper()
函数可以接受任意参数的调用。在wrapper()
函数内,首先打印日志,再紧接着调用原始函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
这个3层嵌套的decorator用法如下:
@log('execute')
def now():
print('2021-04-17')
执行结果如下:
now()
# execute now():
# 2021-04-17
和两层嵌套的decorator相比,3层嵌套的效果是这样的:
now = log('execute')(now)
我们来剖析上面的语句,首先执行log('execute')
,返回的是decorator
函数,再调用返回的函数,参数是now
函数,返回值最终是wrapper
函数。
以上两种decorator的定义都没有问题,但还差最后一步。因为函数也是对象,它有__name__
等属性,但你去看经过decorator装饰之后的函数,它们的__name__
已经从原来的'now'
变成了'wrapper'
:
print(now.__name__)
# wrapper
因为返回的那个wrapper()
函数名字就是'wrapper'
,所以,需要把原始函数的__name__
等属性复制到wrapper()
函数中,否则,有些依赖函数签名的代码执行就会出错。
不需要编写wrapper.__name__ = func.__name__
这样的代码,Python内置的functools.wraps
就是干这个事的,所以,一个完整的decorator的写法如下:
import functools
def log(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
或者针对带参数的decorator:
import functools
def log(text):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
import functools
是导入functools
模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()
的前面加上@functools.wraps(func)
即可。
python基础(补充):python三大器之装饰器的更多相关文章
- Python三大器之装饰器
Python三大器之装饰器 开放封闭原则 一个良好的项目必定是遵守了开放封闭原则的,就比如一段好的Python代码必定是遵循PEP8规范一样.那么什么是开放封闭原则?具体表现在那些点? 开放封闭原则的 ...
- Python菜鸟之路:Python基础-逼格提升利器:装饰器Decorator
一.装饰器 装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等. 装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身 ...
- python三大器之装饰器的练习
装饰器 加载顺序从下至上 执行顺序从上至下 ''' 多层装饰器 ''' def deco1(func): #func=deco2 def wrapper1(*args, **kwargs): '''t ...
- python基础之闭包函数和装饰器
补充:全局变量声明及局部变量引用 python引用变量的顺序: 当前作用域局部变量->外层作用域变量->当前模块中的全局变量->python内置变量 global关键字用来在函数或其 ...
- python 基础篇 11 函数进阶----装饰器
11. 前⽅⾼能-装饰器初识本节主要内容:1. 函数名的运⽤, 第⼀类对象2. 闭包3. 装饰器初识 一:函数名的运用: 函数名是一个变量,但他是一个特殊变量,加上括号可以执行函数. ⼆. 闭包什么是 ...
- Python-Day4 Python基础进阶之生成器/迭代器/装饰器/Json & pickle 数据序列化
一.生成器 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面 ...
- Python基础2:反射、装饰器、JSON,接口
一.反射 最近接触到python的反射机制,遂记录下来已巩固.但是,笔者也是粗略的使用了__import__, getattr()函数而已.目前,笔者的理解是,反射可以使用户通过自定义输入来导入响应的 ...
- Python基础(7)闭包函数、装饰器
一.闭包函数 闭包函数:1.函数内部定义函数,成为内部函数, 2.改内部函数包含对外部作用域,而不是对全局作用域名字的引用 那么该内部函数成为闭包函数 #最简单的无参闭包函数 def func1() ...
- python基础编程: 函数示例、装饰器、模块、内置函数
目录: 函数示例 装饰器 模块 内置函数 一.函数示例: 1.为什么使用函数之模块化程序设计: 不使用模块程序设计的缺点: 1.体系结构不清晰,可主读性差: 2.可扩展性差: 3.程序冗长: 2.定义 ...
随机推荐
- Golang 实现 Redis(9): 使用GeoHash 搜索附近的人
本文是使用 golang 实现 redis 系列的第九篇,主要介绍如何使用 GeoHash 实现搜索附近的人. 搜索附近的POI是一个非常常见的功能,它的技术难点在于地理位置是二维的(经纬度)而我们常 ...
- java算法题
1.下面输出结果是什么? public class Test { public static void main(String[] args) { Person person=new Person(& ...
- Glibc堆管理机制基础
最近正在学习linux下堆的管理机制,收集了书籍和网络上的资料,以自己的理解做了整理,做个记录.如果有什么不对的地方欢迎指出! Memory Allocator 常见的内存管理机制 dlmalloc: ...
- ServiceMesh
传统微服务架构 在微服务模式下,企业内部服务少则几个到几十个,多则上百个,每个服务一般都以集群方式部署,这时自然产生两个问题: 一.服务发现:服务的消费方(Consumer)如何发现服务的提供方(Pr ...
- 《C++ Primer》笔记 第3章 字符串、向量和数组
位于头文件的代码一般来说不应该使用using声明. 如果使用等号(=)初始化一个变量,实际上执行的是拷贝初始化,编译器把等号右侧的初始值拷贝到新创建的对象中去.与之相反,如果不使用等号,则执行的是直接 ...
- 翻译:《实用的Python编程》03_06_Design_discussion
目录 | 上一节 (3.5 主模块) | 下一节 (4 类) 3.6 设计讨论 本节,我们重新考虑之前所做的设计决策. 文件名与可迭代对象 考虑以下两个返回相同输出的程序. # Provide a f ...
- python3 中post处理json 数据
使用详情如下 import json import requests headers = { "User-Agent": "Mozilla/5.0 (Windows NT ...
- rest framework ViewSet
ViewSets 路由选择确定要用于一个请求哪个控制器之后,控制器负责做出请求的感并产生相应的输出. - Ruby on Rails的文档 Django的REST框架允许你的逻辑一组在一个类中的相关意 ...
- 2020 年安装 FreeBSD 系统的基础视频
B 站搜索 BV14i4y137mh 包含了下载,虚拟机安装,配置 SSH 等教程. https://www.bilibili.com/video/BV14i4y137mh
- ZooKeeper 的选举机制,你了解多少?
本文作者:HelloGitHub-老荀 Hi,这里是 HelloGitHub 推出的 HelloZooKeeper 系列,免费开源.有趣.入门级的 ZooKeeper 教程,面向有编程基础的新手. 项 ...