动态规划精讲(一)LC最长公共子序列
P1439 【模板】最长公共子序列
题目描述
给出1,2,…,n 的两个排列P1 和P2 ,求它们的最长公共子序列。
输入格式
第一行是一个数 n。
接下来两行,每行为 n 个数,为自然数 1,2,…,n 的一个排列。
输出格式
一个数,即最长公共子序列的长度。
输入输出样例
输入 #1
5
3 2 1 4 5
1 2 3 4 5
输出 #1
3
思路:
代码:
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n=(int)nums.size();
if (n == 0) return 0;
vector<int> dp(n, 0);
for (int i = 0; i < n; ++i) {
dp[i] = 1;
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
dp[i] = max(dp[i], dp[j] + 1);
}
}
}
return *max_element(dp.begin(), dp.end());
}
};
动态规划精讲(一)LC最长公共子序列的更多相关文章
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 动态规划(一)——最长公共子序列和最长公共子串
注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式 ...
- 动态规划 - 最长公共子序列(LCS)
最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...
- 算法导论-动态规划(最长公共子序列问题LCS)-C++实现
首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2 ...
- 动态规划---最长公共子序列 hdu1159
hdu1159 题目要求两个字符串最长公共子序列, 状态转换方程 f[i][j]=f[i-1][j-1]+1; a[i]=b[j]时 f[i][j]=MAX{f[i-1][j],f[i][j-1] ...
- 【动态规划】【最长公共子序列】Vijos P1111 小胖的水果
题目链接: https://vijos.org/p/1111 题目大意: 多组数据,给两个字符串s1,s2,求把s1,s2拆开从前往后合并后最短是多少 apple + peach = appleach ...
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
随机推荐
- dubbo学习实践(5)之Dubbo-Admin元数据中心配置(zookeeper&Redis&Consul)
1.Dubbo2.7.8元数据中心配置zookeeper版 前面文章已经写到了dubbo-admin管理平台的docker版配置及dubbo服务注册与调用,这篇文章记录dubbo元数据中心配置 翻开d ...
- Docker for windows安装与使用
1.安装Docker for windows之前,需要将系统的hyper-v功能打开 2.下载Docker for windows进行安装 访问url:https://docs.docker.com/ ...
- 【笔记】初探KNN算法(3)
KNN算法(3) 测试算法的目的就是为了帮助我们选择一个更好的模型 训练数据集,测试数据集方面 一般来说,我们训练得到的模型直接在真实的环境中使用 这就导致了一些问题 如果模型很差,未经改进就应用在现 ...
- 【Python机器学习实战】决策树和集成学习(一)
摘要:本部分对决策树几种算法的原理及算法过程进行简要介绍,然后编写程序实现决策树算法,再根据Python自带机器学习包实现决策树算法,最后从决策树引申至集成学习相关内容. 1.决策树 决策树作为一种常 ...
- 《深入浅出vue.js》阅读笔记之(object)变化侦测
1.什么是变化侦测? 通常,在运行时应用内部的状态会不断发生变化,此时需要不停地重新渲染页面,这时如何确定状态中发生了什么变化? 变化侦测就是用来解决这个问题的,它分为两种类型,一种是"推& ...
- Tcp三次握手中细节
TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接,如下图所示.主机A为客户机,主机B为服务器 说明:(1)第一次握手:建立连接时,客户端A发送SYN包(SYN=j)到服务器B ...
- C#中的垃圾回收
- SpringBoot集成<个推推送> Maven 下载jar包异常处理本地打包下载
问题描述 公司需要对用户进行消息推送,选择了个推,由于是Java进行开发,个推操作文档, 这是官网上安装的方式,可是不成功,无论怎么样都无法把Jar包下载下来! MAVEN方式(本人测试Jar无法下载 ...
- C# 对SQlServer访问的完整类
using System; using System.Collections.Generic; using System.Collections.Specialized; using System.C ...
- ant的javac任务的相关属性配置
任务和javac命令是相似,它编译两种类型的Java文件1)没有被编译的java文件2)曾经编译过,但是class文件版本和当前对应的java文件版本不匹配的java文件. 1)javac命令支持的参 ...