Lesson5——Pandas Panel三维数据结构
1 简介
自 Pandas 0.25 版本后, Panel 结构已经被废弃。
pd.__version__ #查看pandas版本
#'1.2.4'
#或者
pd.show_versions()
Panel 结构也称“面板结构”,源自于 Panel Data 一词,翻译为“面板数据”。
Panel 是三维数据结构,有三个轴,分别是:
- items(0 轴):axis =0,Panel 中的每个 items 都对应一个 DataFrame。
- major_axis(1 轴):axis=1,用来描述每个 DataFrame 的行索引。
- minor_axis(2 轴):axis=2,用来描述每个 DataFrame 的列索引。
2 创建Panel 对象
创建 Panel 对象有两种方式
- 使用 nadarry 数组创建,
- 使用 DataFrame 对象创建。
2.1 创建空的 Panel 对象
import pandas as pd
p = pd.Panel()
print(p)
输出结果:
<class 'pandas.core.panel.Panel'>
Dimensions: 0 (items) x 0 (major_axis) x 0 (minor_axis)
Items axis: None
Major_axis axis: None
Minor_axis axis: None
2.2 ndarray三维数组创建
import pandas as pd
import numpy as np
#返回均匀分布的随机样本值位于[0,1)之间
data = np.random.rand(2,4,5)
p = pd.Panel(data)
print (p)
输出结果:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 4
2.3 DataFrame创建
使用 DataFrame 创建一个 Panel :
import pandas as pd
import numpy as np
data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),
'Item2' : pd.DataFrame(np.random.randn(4, 2))}
p = pd.Panel(data)
print(p)
输出结果:
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2
3 Panel中选取数据
使用 Panel 的三个轴来实现,也就是 items
,major_axis
,minor_axis
。下面介绍其中一种:
3.1 使用 items选取数据
示例如下:
import pandas as pd
import numpy as np
data = {'Item1':pd.DataFrame(np.random.randn(4, 3)),
'Item2':pd.DataFrame(np.random.randn(4, 2))}
p = pd.Panel(data)
print(p['Item1'])
输出结果:
0 1 2
0 0.488224 -0.128637 0.930817
1 0.417497 0.896681 0.576657
2 -2.775266 0.571668 0.290082
3 -0.400538 -0.144234 1.110535
上述示例中 data,包含了两个数据项,我们选择了 Item1,输出结果是 4 行 3 列的 DataFrame,其行、列索引分别对应 major_axis 和 minor_axis。
Lesson5——Pandas Panel三维数据结构的更多相关文章
- Pandas三个数据结构
系列(Series) 数据帧(DataFrame) 面板(Panel) 这些数据结构构建在Numpy数组之上,这意味着它们很快. 考虑这些数据结构的最好方法是,较高维数据结构是其较低维数据结构的容器. ...
- Python Pandas -- Panel
Pandas 中一维 series, 二维DataFrame, 三维Panel class pandas.Panel(data=None, items=None, major_axis=None, m ...
- pandas中的数据结构-DataFrame
pandas中的数据结构-DataFrame DataFrame是什么? 表格型的数据结构 DataFrame 是一个表格型的数据类型,每列值类型可以不同 DataFrame 既有行索引.也有列索引 ...
- Python数据分析 Pandas模块 基础数据结构与简介(一)
pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...
- pandas.Panel数据
from pandas import Panel, DataFrame import numpy as np dd = {} for i in range(1, 3): name = 'X' + st ...
- pandas数据分析(数据结构)
本文主要从以下两个方向对pandas的数据结构进行展开,分别为Series和DataFrame(对应的分别是系列与numpy中的一维数组和二维数组) 1.首先从Series讲起,主要介绍Series的 ...
- Python数据分析 Pandas模块 基础数据结构与简介(二)
重点方法 分组:groupby('列名') groupby(['列1'],['列2'........]) 分组步骤: (spiltting)拆分 按照一些规则将数据分为不同的组 (Applying)申 ...
- pandas知识点(数据结构)
1.Series 生成一维数组,左边索引,右边值: In [3]: obj = Series([1,2,3,4,5]) In [4]: obj Out[4]: 0 1 1 2 2 3 3 4 4 5 ...
- pandas.DataFrame.astype数据结构转换
网易云课堂该课程链接地址 https://study.163.com/course/courseMain.htm?share=2&shareId=400000000398149&cou ...
随机推荐
- Java 8 的内存结构
Java8内存结构图 虚拟机内存与本地内存的区别 Java虚拟机在执行的时候会把管理的内存分配成不同的区域,这些区域被称为虚拟机内存,同时,对于虚拟机没有直接管理的物理内存,也有一定的利用,这些被利用 ...
- MyBatis 流式查询
流式查询指的是查询成功后不是返回一个集合而是返回一个迭代器,应用每次从迭代器取一条查询结果.流式查询的好处是能够降低内存使用. 流式查询的过程当中,数据库连接是保持打开状态的,因此要注意的是:执行一个 ...
- [zbar]zbar条码扫描器解析示例
// // Created by leoxae on 2020/3/30. // #include "BarCodeRecogntion.h" string BarCode::Ba ...
- [opencv]建立纯色图
1.建立纯白图片,指定大小 250*250为图片的宽高,可自己设置. Mat white = cv::Mat(250,250,CV_8UC3,Scalar(255,255,255)); 2.建立纯黑图 ...
- WiFi6模块 RW6852-PCIE
RW6852-PCIE是一款高度集成的模块,支持2T2R 802.11ax解决方案,具有MU-MIMO.无线LAN (WLAN) PCI Express网络接口控制器和HS-UART混合接口.它结合了 ...
- Kafka单机安装Version1.0.1(自带Zookeeper)
1.说明 Kafka单机安装,基于版本1.0.1, 使用kafka_2.12-1.0.1.tgz安装包, 其中2.12是编译工具Scala的版本. 而且不需要另外安装Zookeeper服务, 使用Ka ...
- hive 之 查看某库一共有多少张表
思路一: show出所有表,然后wc -l hive -e" use database_name; show tables; "|wc -l 思路二: 1.show出当前库所有的表 ...
- Selenium_使用switch_to.frame处理网页框架切换(13)
与在新窗口打开一个网页后需要切换窗口才能定位元素一样,在iframe标签中的元素也不能直接定位,需要切换到对应的iframe框架中才能进行元素定位. 完成网页框架切换操作需要用selenium中的两个 ...
- JSch Algorithm negotiation fail
https://stackoverflow.com/questions/30846076/jsch-algorithm-negotiation-fail As you can see, the ser ...
- v4l2数据获取流程
V4L2数据获取流程 整个过程相关的数据结构有如下几个: struct v4l2_capability m_cap; /* 驱动能力 */ struct v4l2_format m_fmt; /* 数 ...