Content

给出平行四边形的三个顶点 \((x_1,y_1),(x_2,y_2),(x_3,y_3)\),求出所有可能的第四个顶点。

数据范围:\(\forall i\in[1,3],-1000\leqslant x_i,y_i\leqslant 1000\)。

Solution

这题可以通过平行四边形的一个性质轻松搞定——平行四边形的对角线互相平分

啥啥啥?你还不知道什么是平行四边形?

因为太占空间,去这里看吧qwq。

那么用这个有什么用呢?

我们都知道,一条线段 \(AB\) 的中点计算公式是 \((\dfrac{x_A+x_B}{2},\dfrac{y_A+y_B}{2})\),那么我们来看到下面这个平行四边形:

那么,我们通过上面这个平行四边形的性质可以得到,\(AC\) 和 \(BD\) 的中点是同一个点。那么我们就有:

\[\begin{cases}\dfrac{x_A+x_C}{2}=\dfrac{x_B+x_D}{2}&...(1)\\\dfrac{y_A+y_C}{2}=\dfrac{y_B+y_D}{2}&...(2)\end{cases}
\]

将 \((1)\) 式和 \((2)\) 式分别都乘上 \(2\)可以得到:\(x_A+x_C=x_B+x_D,y_A+y_C=y_B=y_D\)。

所以,现在假设 \(A,B,C\) 三个点为题目中的已知点,那么第四个点 \(D\) 可以有以下几种:

我们可以通过计算得到:

\(D_1(x_A+x_C-x_B,y_A+y_C-y_B)\)

\(D_2(x_A+x_B-x_C,y_A+y_B-y_C)\)

\(D_3(x_B+x_C-x_A,y_B+y_C-y_A)\)

我们可以发现,有且仅有以上这三个点符合要求。因此,满足点的个数为 \(3\),坐标直接按照上面的公式输出即可(顺序可以任意)。

Code

#include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std; int x1, y1, x2, y2, x3, y3; int main() {
scanf("%d%d%d%d%d%d", &x1, &y1, &x2, &y2, &x3, &y3);
printf("3\n%d %d\n%d %d\n%d %d", x2 + x3 - x1, y2 + y3 - y1, x1 + x3 - x2, y1 + y3 - y2, x1 + x2 - x3, y1 + y2 - y3);
}

CF749B Parallelogram is Back 题解的更多相关文章

  1. Parallelogram Counting(平行四边形个数,思维转化)

    1058 - Parallelogram Counting    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit ...

  2. 【codeforces 749B】Parallelogram is Back

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  3. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  4. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  5. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  6. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  7. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  8. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  9. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

随机推荐

  1. dart系列之:在dart中使用数字和字符串

    目录 简介 数字 字符串 StringBuffer 总结 简介 要想熟悉一种语言,最简单的做法就是熟悉dart提供的各种核心库.dart为我们提供了包括dart:core,dart:async,dar ...

  2. GPG 使用指南

    加密与签名 在传输信息时,会面临两个典型的问题: 如何保证发出的消息,只能被预期的接收人获取? 如何保证收到的消息,确实由预期的发送人发出? 这两个问题不难理解.例如发送的邮件可能会被监听,诈骗分子可 ...

  3. javaSE基础复习

    第一天:复习java入门知识,jvm内存,java程序执行流程,数据类型,变量和自动类型转换,运算符... 学习java目的:起初是因为想找工作,拿高薪.后来逐渐在学习java技术的过程中渐渐循喜欢上 ...

  4. uniapp中vuex的基本使用

    1. 创建一个uniapp项目 2. 在项目目录下用npm安装 vuex npm install vuex --save 3. 在项目根目录下创建 store文件夹,在store文件夹中创建 inde ...

  5. NOIOL #2 爆零记

    没有假是真的爆零了,原因:万恶的文操.不管怎样写份题解吧. T1: 做题经历:看了下题发现:不是 edu 的原题吗?兴奋地拿出赛中写的程序搞上去. 大约比赛开始 30min 后开始发现 \(k\) 可 ...

  6. CURL常用参数

    1. CURL简介 cURL是一个利用URL语法在命令行下工作的文件传输工具.它支持文件上传和下载,是综合传输工具.cURL就是客户端(client)的URL工具的意思. 2. 常用参数 -k:不校验 ...

  7. mount 挂载详解

    挂接命令(mount) 首先,介绍一下挂接(mount)命令的使用方法,mount命令参数非常多,这里主要讲一下今天我们要用到的. 命令格式:mount [-t vfstype] [-o option ...

  8. 【GS基础】植物基因组选择研究人员及数量遗传学发展一览

    目录 1.GS研究 2.数量遗传发展 GS应用主要在国外大型动物和种企,国内仍以学术为主.近期整理相关学术文献,了解到一些相关研究人员,记录下备忘查询,但不可能全面. 1.GS研究 Theo Meuw ...

  9. 基于PASA进行基因预测

    PASA, acronym for Program to Assemble Spliced Alignments, is a eukaryotic genome annotation tool tha ...

  10. Python基础之列表内置方法

    目录 1. 列表 1.1 序列 1.2 通用的序列操作 1.3 列表的基本操作 1.4 列表方法 1. 列表 数据结构:以某种方式(如通过编号)组合起来的元素(如数,字符乃至其他数据结构)集合. 在p ...