Keith Conrad. Stirling's Formula.

Stirling's Formula

\[\lim_{n \rightarrow \infty} \frac{n!}{(n^n/e^n)\sqrt{2\pi n}} =1.
\]

Proof:

\[\begin{array}{ll}
n!
&= \int_{0}^\infty x^n e^{-x} \mathrm{d}x \\
&= \int_{-\sqrt{n}}^\infty (n+\sqrt{n}t)^n e^{-(n+\sqrt{n}t)} \sqrt{n} \mathrm{d}t \\
&= \frac{n^n \sqrt{n}}{e^n} \int_{-\sqrt{n}}^{\infty} (1+\frac{t}{\sqrt{n}})^n e^{-\sqrt{n}t}
\mathrm{d}t. \\
&= \frac{n^n \sqrt{n}}{e^n} \int_{-\infty}^{\infty} f_n(t)
\mathrm{d}t,
\end{array}
\]

其中

\[f_{n}(t) =
\left \{
\begin{array}{ll}
0 & t< \sqrt{n} \\
(1+\frac{t}{\sqrt{n}})^n e^{-\sqrt{n}t} & t\ge \sqrt{n}
\end{array}
\right.
\]

接下来证明\(f_n(t)\)趋于\(e^{-\frac{t^2}{2}}\),

\[\ln f_n(t) = n \ln (1+ \frac{t}{\sqrt{n}}) - \sqrt{n}t , t \ge \sqrt{n},
\]
\[\ln (1+x) = 0 + x - \frac{x^2}{2} + o(x^2),
\]

当\(n\)足够大的时候

\[\ln f_n(t) = \sqrt{n}t -t^2/2+\sqrt{n}t+o(t^2/n)=-\frac{t^2}{2}+o(t^2/n),
\]

故\(f_n(t) \rightarrow e^{-t^2/2}\).

观察(\(t \ge -\sqrt{n}\))

\[\begin{array}{ll}
\frac{\mathrm{d}}{\mathrm{d}t}(\ln f_{n+1}(t) - \ln f_n(t) )
&= \frac{\sqrt{n}t}{\sqrt{n}+t} - \frac{\sqrt{n+1}t}{\sqrt{n+1}+t} \\
&= \frac{(\sqrt{n}-\sqrt{n+1})t^2}{(\sqrt{n}+t)(\sqrt{n+1}+t)} \le 0,
\end{array}
\]

又\(f_n(0)=0\), 故

\[f_{n+1} /f_n \ge 1, \quad t \in [\sqrt{n},0),
\]
\[f_{n+1} /f_n \le 1, \quad t \in [0, +\infty).
\]

又\(f_n(t)\)非负, 故根据单调收敛定理和优解控制定理可知

\[\lim_{n\rightarrow \infty} \int_{-\infty}^{+\infty} f_n(t) \mathrm{d}t = \int_{-\infty}^{+\infty} \lim_{n\rightarrow \infty} f_n(t) \mathrm{d}t = \int_{-\infty}^{+\infty}e^{-\frac{t^2}{2}}\mathrm{d} t=\sqrt{2 \pi}.
\]

证毕.

Stirling's Formula的更多相关文章

  1. The Hundred Greatest Theorems

    The Hundred Greatest Theorems The millenium seemed to spur a lot of people to compile "Top 100& ...

  2. [Algorithm] Asymptotic Growth Rate

    f(n) 的形式 vs 判定形势 但,此题型过于简单,一般不出现在考题中. Extended: link Let's set n = 2^m, so m = log(n) T(n) = 2*T(n^( ...

  3. UNDERSTANDING THE GAUSSIAN DISTRIBUTION

    UNDERSTANDING THE GAUSSIAN DISTRIBUTION Randomness is so present in our reality that we are used to ...

  4. 【概率论】1-2:计数方法(Counting Methods)

    title: [概率论]1-2:计数方法(Counting Methods) categories: Mathematic Probability keywords: Counting Methods ...

  5. 一组关于{x}的积分

    \[\Large\displaystyle \int_{0}^{1}\left \{ \frac{1}{x} \right \}\mathrm{d}x~,~\int_{0}^{1}\left \{ \ ...

  6. redmine computed custom field formula tips

    项目中要用到Computed custom field插件,公式不知道怎么写,查了些资料,记录在这里. 1.http://apidock.com/ruby/Time/strftime 查看ruby的字 ...

  7. salesforce 零基础开发入门学习(十五)salesforce中formula的使用(不含Date/Time)

    本文参考官方的formula介绍PDF:https://resources.docs.salesforce.com/200/latest/en-us/sfdc/pdf/salesforce_usefu ...

  8. Hibernate @Formula 注解方式

    1.Formula的作用 Formula的作用就是用一个查询语句动态的生成一个类的属性 就是一条select count(*)...构成的虚拟列,而不是存储在数据库里的一个字段.用比较标准的说法就是: ...

  9. Hibernate @Formula

    在使用Hibernate时经常会遇到实体类某个字段存的是code值而非我们最终想要的中文具体显示的值, 如果使用Hibernate的一对一关联这种,一个属性还好说,但是如果一个实体类里有多个字段都是需 ...

随机推荐

  1. 【bfs】洛谷 P1443 马的遍历

    题目:P1443 马的遍历 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 记录一下第一道ac的bfs,原理是利用队列queue记录下一层的所有点,然后一层一层遍历: 其中: 1.p ...

  2. 内存中 1k 代表什么

    1K也就是 1KB   == 1000 bytes == 1000 *8 位 通常一个地址里面有8位,就是说一个房间里面能存8个0或者1

  3. 【Go】【Basic】MacOS上搭建GO开发环境

    1. GO下载 1.1. 下载地址:https://www.golangtc.com/download (需要科学上网) 1.1.1. PKG安装: 下载这个包:go1.9.2.darwin-amd6 ...

  4. Spring Cloud Feign原理详解

    目录 1.什么是Feign? 2.Open Feign vs Spring Cloud Feign 2.1.OpenFeign 2.2.Spring Cloud Open Feign 3.Spring ...

  5. 设置linux下oracle开机自启动

    1.修改配置文件,vi /etc/oratab orcl:/u01/app/oracle/product/11.2.0/db_1:Y 2.创建启动文件,/etc/init.d/ #!/bin/sh # ...

  6. Centos 常用指令

    1.*.tar 用 tar  xvf 解压 2.*.gz 用 gzip  d或者gunzip 解压 3.*.tar.gz和*.tgz 用 tar xzf 解压 4.*.bz2 用 bzip2 d或者用 ...

  7. Linux centos7 安装.net 环境

    其实在linux 下安装.net 环境并不复杂,但最近遇到的服务器没有外网,比较坑很多依赖都没有,记录下这次的安装过程. 一开始以为是服务器没有外网,后来发现是服务器没有配置dns,于是配置dns 第 ...

  8. DP笔记

    这是一篇蒟蒻被大佬踩爆后写的笔记 套路 0.贪心(废话)(排序...) 1.dp预处理出要用的东西 2.两头同时dp 3.化简题目中本质相同的东西 转化模型 4.数学计算优化 5.分析题目数据考虑该从 ...

  9. 【二进制】【WP】MOCTF逆向题解

    moctf 逆向第一题:SOEASY 这个是个 64 位的软件,OD 打不开,只能用 IDA64 打开,直接搜字符串(shift+F12)就可以看到 moctf 逆向第二题:跳跳跳 这个题当初给了初学 ...

  10. java 多线程Thread 子类 定时器Timer

    定时器Timer, 定时器分类: 1,指定时间指定任务(明天早上8点准时提醒我起床),相当于linux里面的at命令 2,周期性的执行任务(每隔三分钟闹钟响一次),相当于Linux里面的cron命令 ...