x86 cpu卷积网络的自动调谐

这是一个关于如何为x86cpu调整卷积神经网络的文档。

本文不会在Windows或最新版本的macOS上运行。要让它运行,需要将主体包装在

if __name__ == "__main__": 块中。

import os

import numpy as np

import tvm

from tvm import relay, autotvm

from tvm.relay import testing

from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner

from tvm.autotvm.graph_tuner import DPTuner, PBQPTuner

import tvm.contrib.graph_runtime as runtime

Define network

首先需要在中继前端API中定义网络。可以从relay.testing测试或编译

relay.testing.resnet转换。也可以从MXNet、ONNX和TensorFlow加载模型。              本文选择restuning作为示例。

def get_network(name, batch_size):

"""Get the symbol definition and random weight of a network"""

input_shape = (batch_size, 3, 224, 224)

output_shape = (batch_size, 1000)

if "resnet" in name:

n_layer = int(name.split("-")[1])

mod, params = relay.testing.resnet.get_workload(

num_layers=n_layer, batch_size=batch_size, dtype=dtype

)

elif "vgg" in name:

n_layer = int(name.split("-")[1])

mod, params = relay.testing.vgg.get_workload(

num_layers=n_layer, batch_size=batch_size, dtype=dtype

)

elif name == "mobilenet":

mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)

elif name == "squeezenet_v1.1":

mod, params = relay.testing.squeezenet.get_workload(

batch_size=batch_size, version="1.1", dtype=dtype

)

elif name == "inception_v3":

input_shape = (batch_size, 3, 299, 299)

mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)

elif name == "mxnet":

# an example for mxnet model

from mxnet.gluon.model_zoo.vision import get_model

block = get_model("resnet18_v1", pretrained=True)

mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype)

net = mod["main"]

net = relay.Function(

net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs

)

mod = tvm.IRModule.from_expr(net)

else:

raise ValueError("Unsupported network: " + name)

return mod, params, input_shape, output_shape

# Replace "llvm" with the correct target of your CPU.

# For example, for AWS EC2 c5 instance with Intel Xeon

# Platinum 8000 series, the target should be "llvm -mcpu=skylake-avx512".

# For AWS EC2 c4 instance with Intel Xeon E5-2666 v3, it should be

# "llvm -mcpu=core-avx2".

target = "llvm"

batch_size = 1

dtype = "float32"

model_name = "resnet-18"

log_file = "%s.log" % model_name

graph_opt_sch_file = "%s_graph_opt.log" % model_name

# Set the input name of the graph

# For ONNX models, it is typically "0".

input_name = "data"

# Set number of threads used for tuning based on the number of

# physical CPU cores on your machine.

num_threads = 1

os.environ["TVM_NUM_THREADS"] = str(num_threads)

Configure tensor tuning settings and create tasks

为了在x86cpu上获得更好的内核执行性能,需要将卷积内核的数据布局从“NCHW”改为“NCHWc”。为了解决这种情况,在topi中定义了conv2d NCHWc运算符。将调整此运算符,而不是普通的conv2d。

将使用本地模式来优化配置。RPC跟踪器模式的设置类似于ARM CPU的卷积网络自动调谐教程中的方法。

为了进行精确测量,应该重复测量几次,并使用结果的平均值。此外,需要在重复测量之间刷新缓存中的权重张量。在端到端推断期间,这可以使一个操作符的测量延迟更接近其实际延迟。

tuning_option = {

"log_filename": log_file,

"tuner": "random",

"early_stopping": None,

"measure_option": autotvm.measure_option(

builder=autotvm.LocalBuilder(),

runner=autotvm.LocalRunner(

number=1, repeat=10, min_repeat_ms=0, enable_cpu_cache_flush=True

),

),

}

# You can skip the implementation of this function for this tutorial.

def tune_kernels(

tasks, measure_option, tuner="gridsearch", early_stopping=None, log_filename="tuning.log"

):

for i, task in enumerate(tasks):

prefix = "[Task %2d/%2d] " % (i + 1, len(tasks))

# create tuner

if tuner == "xgb" or tuner == "xgb-rank":

tuner_obj = XGBTuner(task, loss_type="rank")

elif tuner == "ga":

tuner_obj = GATuner(task, pop_size=50)

elif tuner == "random":

tuner_obj = RandomTuner(task)

elif tuner == "gridsearch":

tuner_obj = GridSearchTuner(task)

else:

raise ValueError("Invalid tuner: " + tuner)

# do tuning

n_trial = len(task.config_space)

tuner_obj.tune(

n_trial=n_trial,

early_stopping=early_stopping,

measure_option=measure_option,

callbacks=[

autotvm.callback.progress_bar(n_trial, prefix=prefix),

autotvm.callback.log_to_file(log_filename),

],

)

# Use graph tuner to achieve graph level optimal schedules

# Set use_DP=False if it takes too long to finish.

def tune_graph(graph, dshape, records, opt_sch_file, use_DP=True):

target_op = [

relay.op.get("nn.conv2d"),

]

Tuner = DPTuner if use_DP else PBQPTuner

executor = Tuner(graph, {input_name: dshape}, records, target_op, target)

executor.benchmark_layout_transform(min_exec_num=2000)

executor.run()

executor.write_opt_sch2record_file(opt_sch_file)

最后,启动优化作业并评估端到端性能。

def tune_and_evaluate(tuning_opt):

# extract workloads from relay program

print("Extract tasks...")

mod, params, data_shape, out_shape = get_network(model_name, batch_size)

tasks = autotvm.task.extract_from_program(

mod["main"], target=target, params=params, ops=(relay.op.get("nn.conv2d"),)

)

# run tuning tasks

tune_kernels(tasks, **tuning_opt)

tune_graph(mod["main"], data_shape, log_file, graph_opt_sch_file)

# compile kernels with graph-level best records

with autotvm.apply_graph_best(graph_opt_sch_file):

print("Compile...")

with tvm.transform.PassContext(opt_level=3):

lib = relay.build_module.build(mod, target=target, params=params)

# upload parameters to device

ctx = tvm.cpu()

data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))

module = runtime.GraphModule(lib["default"](ctx))

module.set_input(input_name, data_tvm)

# evaluate

print("Evaluate inference time cost...")

ftimer = module.module.time_evaluator("run", ctx, number=100, repeat=3)

prof_res = np.array(ftimer().results) * 1000  # convert to millisecond

print(

"Mean inference time (std dev): %.2f ms (%.2f ms)"

% (np.mean(prof_res), np.std(prof_res))

)

# We do not run the tuning in our webpage server since it takes too long.

# Uncomment the following line to run it by yourself.

# tune_and_evaluate(tuning_option)

Sample Output

调整需要编译许多程序并从中提取特性。因此建议使用高性能CPU。下面列出了一个示例输出。

Extract tasks...
Tuning...
[Task  1/12]  Current/Best:  598.05/2497.63 GFLOPS | Progress: (252/252) | 1357.95 s Done.
[Task  2/12]  Current/Best:  522.63/2279.24 GFLOPS | Progress: (784/784) | 3989.60 s Done.
[Task  3/12]  Current/Best:  447.33/1927.69 GFLOPS | Progress: (784/784) | 3869.14 s Done.
[Task  4/12]  Current/Best:  481.11/1912.34 GFLOPS | Progress: (672/672) | 3274.25 s Done.
[Task  5/12]  Current/Best:  414.09/1598.45 GFLOPS | Progress: (672/672) | 2720.78 s Done.
[Task  6/12]  Current/Best:  508.96/2273.20 GFLOPS | Progress: (768/768) | 3718.75 s Done.
[Task  7/12]  Current/Best:  469.14/1955.79 GFLOPS | Progress: (576/576) | 2665.67 s Done.
[Task  8/12]  Current/Best:  230.91/1658.97 GFLOPS | Progress: (576/576) | 2435.01 s Done.
[Task  9/12]  Current/Best:  487.75/2295.19 GFLOPS | Progress: (648/648) | 3009.95 s Done.
[Task 10/12]  Current/Best:  182.33/1734.45 GFLOPS | Progress: (360/360) | 1755.06 s Done.
[Task 11/12]  Current/Best:  372.18/1745.15 GFLOPS | Progress: (360/360) | 1684.50 s Done.
[Task 12/12]  Current/Best:  215.34/2271.11 GFLOPS | Progress: (400/400) | 2128.74 s Done.
Compile...
Evaluate inference time cost...
Mean inference time (std dev): 3.16 ms (0.03 ms)

https://tvm.apache.org/docs/tutorials/autotvm/tune_relay_x86.html

下载Python源代码:tune_relay_x86.py

下载Jupyter笔记本:tune_relay_x86.ipynbDownload Python source code: tune_relay_x86.py

Download Jupyter notebook: tune_relay_x86.ipynb

x86 cpu卷积网络的自动调谐的更多相关文章

  1. ARM-CPU卷积网络的自动调谐

    ARM-CPU卷积网络的自动调谐 为特定的ARM设备自动调谐对于获得最佳性能至关重要.这是一个关于如何调整整个卷积网络的资料. 以模板的形式编写了TVM中ARM CPU的操作实现.模板有许多可调旋钮( ...

  2. NVIDIA GPU卷积网络的自动调谐

    NVIDIA GPU卷积网络的自动调谐 针对特定设备和工作负载的自动调整对于获得最佳性能至关重要.这是关于如何为NVIDIA GPU调整整个卷积网络. NVIDIA GPU在TVM中的操作实现是以模板 ...

  3. 自动调试用于移动GPU的卷积网络

    自动调试用于移动GPU的卷积网络 对特定设备进行自动调试对于获得最佳性能至关重要.这是有关如何调试整个卷积网络的说明文档. TVM中Mobile GPU的算子实现以模板形式编写.模板具有许多可调旋钮( ...

  4. 为x86 CPU自动调度神经网络

    为x86 CPU自动调度神经网络 对特定设备和工作负载进行自动调试对于获得最佳性能至关重要.这是有关如何使用自动调度器为x86 CPU调试整个神经网络的文档. 为了自动调试神经网络,将网络划分为小的子 ...

  5. 基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法

    基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics T ...

  6. 全卷积网络 FCN 详解

    背景 CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题.神经网络大神Jonathan Long发表了<Fully Convolutional N ...

  7. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

  8. FCN-全卷积网络

    全卷积网络 Fully Convolutional Networks CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定 ...

  9. 卷积网络训练太慢?Yann LeCun:已解决CIFAR-10,目标 ImageNet

    原文连接:http://blog.kaggle.com/2014/12/22/convolutional-nets-and-cifar-10-an-interview-with-yan-lecun/ ...

随机推荐

  1. mysql 密码忘记解决办法

    bin>net stop mysql bin>mysqld --skip-grant-tables bin>mysql mysql>use mysql mysql>upd ...

  2. hdu4846 最大子正方形(dp)

    题意:       给你一个图,让你找到最大的子矩形. 思路:       之前做过一个最大子矩阵,记得当时是用三种方法做的,两种都是瓶颈法,第三种是dp,结果今天的用瓶颈吧怎么都过不去,哎!不知道为 ...

  3. PAT 乙级 -- 1013 -- 数素数

    题目简介 令Pi表示第i个素数.现任给两个正整数M <= N <= 104,请输出PM到PN的所有素数. 输入格式: 输入在一行中给出M和N,其间以空格分隔. 输出格式: 输出从PM到PN ...

  4. UVA10905孩子们的游戏

    题意:       给你n个数字,让你用这n个数组组成一个最大的数字并输出来. 思路:       这个题目看完第一反应就是直接按照字符串排序,然后轻轻松松写完,交上去直接wa了,为什么会wa呢?感觉 ...

  5. Dubbo原理剖析 之 @DubboReference.version设置为*

    原文链接 Dubbo原理剖析 之 @DubboReference.version设置为* 1 背景 Dubbo在消费端提供了一个功能,即将消费者的版本号指定为*,那么不管服务端的接口版本是啥,都可以调 ...

  6. 阿里面试官用HashMap把我问倒了

    本人是一名大三学生,最近在找暑期实习,其中也面试过两次阿里,一次菜鸟网络部门.一次网商银行部门,当然我都失败了,同时也让我印象很深刻,因此记录了其中一些面试心得,我觉得这个问题很值得分享,因此分享给大 ...

  7. Django(21)migrate报错的解决方案

    前言 在讲解如何解决migrate报错原因前,我们先要了解migrate做了什么事情,migrate:将新生成的迁移脚本.映射到数据库中.创建新的表或者修改表的结构. 问题1:migrate怎么判断哪 ...

  8. 列出系统上的存储库,状态是enabled [root@blog ~]# dnf repolist

    DNF 和 YUM 均是 rpm 软件包管理工具,但是 DFN 替代 YUM 的说法由来已久,因为 YUM 包管理工具有一些问题长期得不到解决. 这些问题包括性能低下.内存占用高以及依赖包解决方案不佳 ...

  9. Linux下使用bcwipe擦除磁盘空间

    Linux下使用bcwipe擦除磁盘空间 2 Replies 如果要彻底删除硬盘上的文件,Windows下有磁盘粉碎机,bcwipe等. Linux下,也有bcwipe,而且功能更强大. 擦除磁盘剩余 ...

  10. 基于多端口的Web服务

    [Centos7.4版本] !!!测试环境我们首关闭防火墙和selinux [root@localhost ~]# systemctl stop firewalld [root@localhost ~ ...