x86 cpu卷积网络的自动调谐

这是一个关于如何为x86cpu调整卷积神经网络的文档。

本文不会在Windows或最新版本的macOS上运行。要让它运行,需要将主体包装在

if __name__ == "__main__": 块中。

import os

import numpy as np

import tvm

from tvm import relay, autotvm

from tvm.relay import testing

from tvm.autotvm.tuner import XGBTuner, GATuner, RandomTuner, GridSearchTuner

from tvm.autotvm.graph_tuner import DPTuner, PBQPTuner

import tvm.contrib.graph_runtime as runtime

Define network

首先需要在中继前端API中定义网络。可以从relay.testing测试或编译

relay.testing.resnet转换。也可以从MXNet、ONNX和TensorFlow加载模型。              本文选择restuning作为示例。

def get_network(name, batch_size):

"""Get the symbol definition and random weight of a network"""

input_shape = (batch_size, 3, 224, 224)

output_shape = (batch_size, 1000)

if "resnet" in name:

n_layer = int(name.split("-")[1])

mod, params = relay.testing.resnet.get_workload(

num_layers=n_layer, batch_size=batch_size, dtype=dtype

)

elif "vgg" in name:

n_layer = int(name.split("-")[1])

mod, params = relay.testing.vgg.get_workload(

num_layers=n_layer, batch_size=batch_size, dtype=dtype

)

elif name == "mobilenet":

mod, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)

elif name == "squeezenet_v1.1":

mod, params = relay.testing.squeezenet.get_workload(

batch_size=batch_size, version="1.1", dtype=dtype

)

elif name == "inception_v3":

input_shape = (batch_size, 3, 299, 299)

mod, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)

elif name == "mxnet":

# an example for mxnet model

from mxnet.gluon.model_zoo.vision import get_model

block = get_model("resnet18_v1", pretrained=True)

mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype)

net = mod["main"]

net = relay.Function(

net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs

)

mod = tvm.IRModule.from_expr(net)

else:

raise ValueError("Unsupported network: " + name)

return mod, params, input_shape, output_shape

# Replace "llvm" with the correct target of your CPU.

# For example, for AWS EC2 c5 instance with Intel Xeon

# Platinum 8000 series, the target should be "llvm -mcpu=skylake-avx512".

# For AWS EC2 c4 instance with Intel Xeon E5-2666 v3, it should be

# "llvm -mcpu=core-avx2".

target = "llvm"

batch_size = 1

dtype = "float32"

model_name = "resnet-18"

log_file = "%s.log" % model_name

graph_opt_sch_file = "%s_graph_opt.log" % model_name

# Set the input name of the graph

# For ONNX models, it is typically "0".

input_name = "data"

# Set number of threads used for tuning based on the number of

# physical CPU cores on your machine.

num_threads = 1

os.environ["TVM_NUM_THREADS"] = str(num_threads)

Configure tensor tuning settings and create tasks

为了在x86cpu上获得更好的内核执行性能,需要将卷积内核的数据布局从“NCHW”改为“NCHWc”。为了解决这种情况,在topi中定义了conv2d NCHWc运算符。将调整此运算符,而不是普通的conv2d。

将使用本地模式来优化配置。RPC跟踪器模式的设置类似于ARM CPU的卷积网络自动调谐教程中的方法。

为了进行精确测量,应该重复测量几次,并使用结果的平均值。此外,需要在重复测量之间刷新缓存中的权重张量。在端到端推断期间,这可以使一个操作符的测量延迟更接近其实际延迟。

tuning_option = {

"log_filename": log_file,

"tuner": "random",

"early_stopping": None,

"measure_option": autotvm.measure_option(

builder=autotvm.LocalBuilder(),

runner=autotvm.LocalRunner(

number=1, repeat=10, min_repeat_ms=0, enable_cpu_cache_flush=True

),

),

}

# You can skip the implementation of this function for this tutorial.

def tune_kernels(

tasks, measure_option, tuner="gridsearch", early_stopping=None, log_filename="tuning.log"

):

for i, task in enumerate(tasks):

prefix = "[Task %2d/%2d] " % (i + 1, len(tasks))

# create tuner

if tuner == "xgb" or tuner == "xgb-rank":

tuner_obj = XGBTuner(task, loss_type="rank")

elif tuner == "ga":

tuner_obj = GATuner(task, pop_size=50)

elif tuner == "random":

tuner_obj = RandomTuner(task)

elif tuner == "gridsearch":

tuner_obj = GridSearchTuner(task)

else:

raise ValueError("Invalid tuner: " + tuner)

# do tuning

n_trial = len(task.config_space)

tuner_obj.tune(

n_trial=n_trial,

early_stopping=early_stopping,

measure_option=measure_option,

callbacks=[

autotvm.callback.progress_bar(n_trial, prefix=prefix),

autotvm.callback.log_to_file(log_filename),

],

)

# Use graph tuner to achieve graph level optimal schedules

# Set use_DP=False if it takes too long to finish.

def tune_graph(graph, dshape, records, opt_sch_file, use_DP=True):

target_op = [

relay.op.get("nn.conv2d"),

]

Tuner = DPTuner if use_DP else PBQPTuner

executor = Tuner(graph, {input_name: dshape}, records, target_op, target)

executor.benchmark_layout_transform(min_exec_num=2000)

executor.run()

executor.write_opt_sch2record_file(opt_sch_file)

最后,启动优化作业并评估端到端性能。

def tune_and_evaluate(tuning_opt):

# extract workloads from relay program

print("Extract tasks...")

mod, params, data_shape, out_shape = get_network(model_name, batch_size)

tasks = autotvm.task.extract_from_program(

mod["main"], target=target, params=params, ops=(relay.op.get("nn.conv2d"),)

)

# run tuning tasks

tune_kernels(tasks, **tuning_opt)

tune_graph(mod["main"], data_shape, log_file, graph_opt_sch_file)

# compile kernels with graph-level best records

with autotvm.apply_graph_best(graph_opt_sch_file):

print("Compile...")

with tvm.transform.PassContext(opt_level=3):

lib = relay.build_module.build(mod, target=target, params=params)

# upload parameters to device

ctx = tvm.cpu()

data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))

module = runtime.GraphModule(lib["default"](ctx))

module.set_input(input_name, data_tvm)

# evaluate

print("Evaluate inference time cost...")

ftimer = module.module.time_evaluator("run", ctx, number=100, repeat=3)

prof_res = np.array(ftimer().results) * 1000  # convert to millisecond

print(

"Mean inference time (std dev): %.2f ms (%.2f ms)"

% (np.mean(prof_res), np.std(prof_res))

)

# We do not run the tuning in our webpage server since it takes too long.

# Uncomment the following line to run it by yourself.

# tune_and_evaluate(tuning_option)

Sample Output

调整需要编译许多程序并从中提取特性。因此建议使用高性能CPU。下面列出了一个示例输出。

Extract tasks...
Tuning...
[Task  1/12]  Current/Best:  598.05/2497.63 GFLOPS | Progress: (252/252) | 1357.95 s Done.
[Task  2/12]  Current/Best:  522.63/2279.24 GFLOPS | Progress: (784/784) | 3989.60 s Done.
[Task  3/12]  Current/Best:  447.33/1927.69 GFLOPS | Progress: (784/784) | 3869.14 s Done.
[Task  4/12]  Current/Best:  481.11/1912.34 GFLOPS | Progress: (672/672) | 3274.25 s Done.
[Task  5/12]  Current/Best:  414.09/1598.45 GFLOPS | Progress: (672/672) | 2720.78 s Done.
[Task  6/12]  Current/Best:  508.96/2273.20 GFLOPS | Progress: (768/768) | 3718.75 s Done.
[Task  7/12]  Current/Best:  469.14/1955.79 GFLOPS | Progress: (576/576) | 2665.67 s Done.
[Task  8/12]  Current/Best:  230.91/1658.97 GFLOPS | Progress: (576/576) | 2435.01 s Done.
[Task  9/12]  Current/Best:  487.75/2295.19 GFLOPS | Progress: (648/648) | 3009.95 s Done.
[Task 10/12]  Current/Best:  182.33/1734.45 GFLOPS | Progress: (360/360) | 1755.06 s Done.
[Task 11/12]  Current/Best:  372.18/1745.15 GFLOPS | Progress: (360/360) | 1684.50 s Done.
[Task 12/12]  Current/Best:  215.34/2271.11 GFLOPS | Progress: (400/400) | 2128.74 s Done.
Compile...
Evaluate inference time cost...
Mean inference time (std dev): 3.16 ms (0.03 ms)

https://tvm.apache.org/docs/tutorials/autotvm/tune_relay_x86.html

下载Python源代码:tune_relay_x86.py

下载Jupyter笔记本:tune_relay_x86.ipynbDownload Python source code: tune_relay_x86.py

Download Jupyter notebook: tune_relay_x86.ipynb

x86 cpu卷积网络的自动调谐的更多相关文章

  1. ARM-CPU卷积网络的自动调谐

    ARM-CPU卷积网络的自动调谐 为特定的ARM设备自动调谐对于获得最佳性能至关重要.这是一个关于如何调整整个卷积网络的资料. 以模板的形式编写了TVM中ARM CPU的操作实现.模板有许多可调旋钮( ...

  2. NVIDIA GPU卷积网络的自动调谐

    NVIDIA GPU卷积网络的自动调谐 针对特定设备和工作负载的自动调整对于获得最佳性能至关重要.这是关于如何为NVIDIA GPU调整整个卷积网络. NVIDIA GPU在TVM中的操作实现是以模板 ...

  3. 自动调试用于移动GPU的卷积网络

    自动调试用于移动GPU的卷积网络 对特定设备进行自动调试对于获得最佳性能至关重要.这是有关如何调试整个卷积网络的说明文档. TVM中Mobile GPU的算子实现以模板形式编写.模板具有许多可调旋钮( ...

  4. 为x86 CPU自动调度神经网络

    为x86 CPU自动调度神经网络 对特定设备和工作负载进行自动调试对于获得最佳性能至关重要.这是有关如何使用自动调度器为x86 CPU调试整个神经网络的文档. 为了自动调试神经网络,将网络划分为小的子 ...

  5. 基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法

    基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics T ...

  6. 全卷积网络 FCN 详解

    背景 CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题.神经网络大神Jonathan Long发表了<Fully Convolutional N ...

  7. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

  8. FCN-全卷积网络

    全卷积网络 Fully Convolutional Networks CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定 ...

  9. 卷积网络训练太慢?Yann LeCun:已解决CIFAR-10,目标 ImageNet

    原文连接:http://blog.kaggle.com/2014/12/22/convolutional-nets-and-cifar-10-an-interview-with-yan-lecun/ ...

随机推荐

  1. Android的so注入( inject)和函数Hook(基于got表) - 支持arm和x86

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/53942648 前面深入学习了古河的Libinject注入Android进程,下面来 ...

  2. hdu3746 KMP的next数组应用,求项链首尾项链循环

    题意:       给你一个项链,问你最少加多少个珠子能满足整个项链是一个循环的项链(首尾相连) 思路:      KMP的简单应用只要了解next数组的意义就好说了,下面总结下  next在循环方面 ...

  3. POJ1087DFS+匈牙利或者DINIC

    题意:      有n个插孔,m个电器,q种转换器(转换器可以无限用),然后问你最多有多少个电器能充电. 思路:       比较简单,就是在建图的时候要考虑下,我用了两种方法做的,一个是最大流,这个 ...

  4. C++ STL 思维导图,脑图,树形图。

    https://blog.csdn.net/weixin_41743247/article/details/90635931

  5. vue 2.9.6升级到最新版本

    在看文档https://cli.vuejs.org/zh/guide/installation.html中,按步骤升级vue: 于是就先通过 npm uninstall vue-cli -g卸载vue ...

  6. 北航OO(2020)第二单元博客作业

    第二单元第一次作业 多线程设计策略 第一次作业的想法是设计三个线程:输入线程,调度器线程以及电梯线程.输入线程获取请求并发送给调度器线程:调度器线程通过查询电梯线程的状态(等待.停靠以及移动),并综合 ...

  7. ACM基础板子

    新生赛以后就正式成为一名acmer啦 ~虽然没有打过比赛呜呜呜 要好好学算法,拿一个牌牌嘛~ 这里就记录算法学习情况,也怕自己偷懒,学一个就记录,看看长时间拖更就是在摸鱼,摸鱼和鸽子都是本质 ,加油! ...

  8. CRM是什么意思,有哪些作用?

    我们总会听到一些人提到CRM或CRM系统,但是通常不知道它的含义,所以今天小Z就来详细介绍一下CRM. GartnerGroup1993年首次提出了这一概念:所谓的客户关系管理就是为企业提供一个全面的 ...

  9. NPM包管理器入门(附加cnpm : 无法加载文件错误解决方案)

    NPM 包管理器 1.作用: 快速构建nodejs工程 快速安装和依赖第三个模块 2.使用方法 快速构建 npm init 会得到一package.json文件 { "name": ...

  10. HUGO 创建属于自己的博客

    Hugo 拥有超快的速度,强大的内容管理和强大的模板语言,使其非常适合各种静态网站.可以轻松安装在macOS,Linux,Windows等平台上,在开发过程中使用LiveReload可即时渲染更改 一 ...