GPU上如何优化卷积

本文将演示如何在TVM中编写高性能卷积实现。我们以平方大小的输入张量和滤波器为例,假设卷积的输入是大批量的。在本例中,使用不同的布局来存储数据,以实现更好的数据局部性。缓冲区布局为HWCN,代表高度、宽度、通道、批次。

Preparation and Algorithm

对于256个通道和14 x 14维的输入张量,使用固定大小。批量大小是256。卷积滤波器包含512个尺寸为3 x 3的滤波器。使用步幅大小1和填充大小1进行卷积。下面的代码定义了TVM中的卷积算法。

import numpy as np

import tvm

from tvm import te

# The sizes of inputs and filters

batch = 256

in_channel = 256

out_channel = 512

in_size = 14

kernel = 3

pad = 1

stride = 1

# Algorithm

A = te.placeholder((in_size, in_size, in_channel, batch), name="A")

W = te.placeholder((kernel, kernel, in_channel, out_channel), name="W")

out_size = (in_size - kernel + 2 * pad) // stride + 1

# Pad input

Apad = te.compute(

(in_size + 2 * pad, in_size + 2 * pad, in_channel, batch),

lambda yy, xx, cc, nn: tvm.tir.if_then_else(

tvm.tir.all(yy >= pad, yy - pad < in_size, xx >= pad, xx - pad < in_size),

A[yy - pad, xx - pad, cc, nn],

tvm.tir.const(0.0, "float32"),

),

name="Apad",

)

# Create reduction variables

rc = te.reduce_axis((0, in_channel), name="rc")

ry = te.reduce_axis((0, kernel), name="ry")

rx = te.reduce_axis((0, kernel), name="rx")

# Compute the convolution

B = te.compute(

(out_size, out_size, out_channel, batch),

lambda yy, xx, ff, nn: te.sum(

Apad[yy * stride + ry, xx * stride + rx, rc, nn] * W[ry, rx, rc, ff], axis=[ry, rx, rc]

),

name="B",

)

Memory Hierarchy

首先指定缓冲区的内存层次结构。下图显示了GPU内存层次结构。与CPU内存层次结构的一个重要区别是GPU提供了一个称为共享内存的缓存缓冲区,由程序员管理。因此,如何最大限度地利用共享内存中的数据是实现GPU内核高性能的关键。

在本例中,将Apad和W加载到缓冲区AA和WW中,存储在共享内存中。这些缓冲区将由同一线程块内的所有线程共享,以计算卷积。然后每个线程将自己的部分从共享缓冲区加载到本地寄存器AL和WL中。BL是输出B的本地缓存,它也存储在线程本地寄存器中。

# Designate the memory hierarchy

s = te.create_schedule(B.op)

s[Apad].compute_inline()  # compute Apad inline

AA = s.cache_read(Apad, "shared", [B])

WW = s.cache_read(W, "shared", [B])

AL = s.cache_read(AA, "local", [B])

WL = s.cache_read(WW, "local", [B])

BL = s.cache_write(B, "local")

Blocking

下面的代码将工作负载分成线程块和单个线程。我们遵循矩阵乘法中的分块方案。如下图所示,给定一个像素坐标(y,x),线程块负责计算输出通道和批处理的块系数x块系数(64x64)的区域。由于共享内存空间的限制,我们每次只从Apad和B加载stepx块系数(8x64)数据到共享内存中的缓冲区。

# tile consts

tile = 8

num_thread = 8

block_factor = tile * num_thread

step = 8

vthread = 2

# Get the GPU thread indices

block_x = te.thread_axis("blockIdx.x")

block_y = te.thread_axis("blockIdx.y")

block_z = te.thread_axis("blockIdx.z")

thread_x = te.thread_axis((0, num_thread), "threadIdx.x")

thread_y = te.thread_axis((0, num_thread), "threadIdx.y")

thread_xz = te.thread_axis((0, vthread), "vthread", name="vx")

thread_yz = te.thread_axis((0, vthread), "vthread", name="vy")

# Split the workloads

hi, wi, fi, ni = s[B].op.axis

bz = s[B].fuse(hi, wi)

by, fi = s[B].split(fi, factor=block_factor)

bx, ni = s[B].split(ni, factor=block_factor)

# Bind the iteration variables to GPU thread indices

s[B].bind(bz, block_z)

s[B].bind(by, block_y)

s[B].bind(bx, block_x)

Virtual Thread Split

进一步将工作负载从一个线程块分割到各个线程。为了避免冲突,将8个线程分成4个部分,然后使用8个线程分成4个部分。因此,如下图所示,每个线程计算4个跨距网格,其中每个网格的大小为4 x 4。

tyz, fi = s[B].split(fi, nparts=vthread)  # virtual thread split

txz, ni = s[B].split(ni, nparts=vthread)  # virtual thread split

ty, fi = s[B].split(fi, nparts=num_thread)

tx, ni = s[B].split(ni, nparts=num_thread)

s[B].reorder(bz, by, bx, tyz, txz, ty, tx, fi, ni)

s[B].bind(tyz, thread_yz)

s[B].bind(txz, thread_xz)

s[B].bind(ty, thread_y)

s[B].bind(tx, thread_x)

Cooperative Fetching

如前所述,每个时间步都需要将步骤x块因子数据从GPU全局内存传输到共享内存。为了减少每个线程的内存传输,下面的代码允许同一线程块中的线程协同从全局内存中获取相关数据。

# Schedule BL local write

s[BL].compute_at(s[B], tx)

yi, xi, fi, ni = s[BL].op.axis

ry, rx, rc = s[BL].op.reduce_axis

rco, rci = s[BL].split(rc, factor=step)

s[BL].reorder(rco, ry, rx, rci, fi, ni)

# Attach computation to iteration variables

s[AA].compute_at(s[BL], rx)

s[WW].compute_at(s[BL], rx)

s[AL].compute_at(s[BL], rci)

s[WL].compute_at(s[BL], rci)

# Schedule for A's shared memory load

yi, xi, ci, ni = s[AA].op.axis

ty, ci = s[AA].split(ci, nparts=num_thread)

tx, ni = s[AA].split(ni, nparts=num_thread)

_, ni = s[AA].split(ni, factor=4)

s[AA].reorder(ty, tx, yi, xi, ci, ni)

s[AA].bind(ty, thread_y)

s[AA].bind(tx, thread_x)

s[AA].vectorize(ni)  # vectorize memory load

# Schedule for W's shared memory load

yi, xi, ci, fi = s[WW].op.axis

ty, ci = s[WW].split(ci, nparts=num_thread)

tx, fi = s[WW].split(fi, nparts=num_thread)

_, fi = s[WW].split(fi, factor=4)

s[WW].reorder(ty, tx, yi, xi, ci, fi)

s[WW].bind(ty, thread_y)

s[WW].bind(tx, thread_x)

s[WW].vectorize(fi)  # vectorize memory load

Generate CUDA Kernel

最后利用TVM生成并编译了CUDA内核,并对卷积延迟进行了评估。

func = tvm.build(s, [A, W, B], "cuda")

ctx = tvm.gpu(0)

a_np = np.random.uniform(size=(in_size, in_size, in_channel, batch)).astype(A.dtype)

w_np = np.random.uniform(size=(kernel, kernel, in_channel, out_channel)).astype(W.dtype)

a = tvm.nd.array(a_np, ctx)

w = tvm.nd.array(w_np, ctx)

b = tvm.nd.array(np.zeros((out_size, out_size, out_channel, batch), dtype=B.dtype), ctx)

func(a, w, b)

evaluator = func.time_evaluator(func.entry_name, ctx, number=1)

print("Convolution: %f ms" % (evaluator(a, w, b).mean * 1e3))

Out:

Convolution: 53.197723 ms

https://tvm.apache.org/docs/tutorials/optimize/opt_conv_cuda.html

GPU上如何优化卷积的更多相关文章

  1. TVM 优化 ARM GPU 上的移动深度学习

    TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源 ...

  2. TVM在ARM GPU上优化移动深度学习

    TVM在ARM GPU上优化移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与在台式机平台上所做的类似,在移动设备中使用GPU可以提高推理速度和能源效率.但是,大 ...

  3. TensorFlow之CNN:运用Batch Norm、Dropout和早停优化卷积神经网络

    学卷积神经网络的理论的时候,我觉得自己看懂了,可是到了用代码来搭建一个卷积神经网络时,我发现自己有太多模糊的地方.这次还是基于MINIST数据集搭建一个卷积神经网络,首先给出一个基本的模型,然后再用B ...

  4. 如何使用TensorCores优化卷积

    如何使用TensorCores优化卷积 本文将演示如何在TVM中使用TensorCores编写高性能的卷积计划.假设卷积的输入有大量数据.首先介绍如何在GPU上优化卷积. TensorCore简介 每 ...

  5. 在配有英特尔® Iris™ 显卡的系统上通过优化对 Just Cause 3 进行增强

    高端 PC 继续通过高性能显卡驱动桌面游戏. 一流的"梦想机器"基于第六代智能 英特尔® 酷睿™ 处理器i7-6700K等 CPU,通常与高端独立显卡配合使用以运行要求最严苛的游戏 ...

  6. 深入剖析GPU Early Z优化

    最近在公司群里同事发了一个UE4关于Mask材质的优化,比如在场景中有大面积的草和树的时候,可以在很大程度上提高效率.这其中的原理就是利用了GPU的特性Early Z,但是它的做法跟我最开始的理解有些 ...

  7. GPU上的图像和信号处理

    GPU上的图像和信号处理 NVIDIA Performance Primitives(NPP)库提供GPU加速的图像,视频和信号处理功能,其执行速度比仅CPU实施快30倍.拥有5000多个用于图像和信 ...

  8. NVIDIA GPU上的Tensor线性代数

    NVIDIA GPU上的Tensor线性代数 cuTENSOR库是同类中第一个GPU加速的张量线性代数库,提供张量收缩,归约和逐元素运算.cuTENSOR用于加速在深度学习训练和推理,计算机视觉,量子 ...

  9. NVIDIA GPU上的直接线性求解器

    NVIDIA GPU上的直接线性求解器 NVIDIA cuSOLVER库提供了密集且稀疏的直接线性求解器和本征求解器的集合,它们为计算机视觉,CFD,计算化学和线性优化应用程序提供了显着的加速.cuS ...

随机推荐

  1. C/C++ 手工实现IAT导入表注入劫持

    DLL注入有多种方式,今天介绍的这一种注入方式是通过修改导入表,增加一项导入DLL以及导入函数,我们知道当程序在被运行起来之前,其导入表中的导入DLL与导入函数会被递归读取加载到目标空间中,我们向导入 ...

  2. 编译Android内核 For nexus 5 以及绕过Android的反调试

    本文博客链接:http://blog.csdn.net/qq1084283172/article/details/54880488 前面的博客中已经记录了Nexus 5手机的Android 4.4.4 ...

  3. android apk壳

    壳对于有过pc端加解密经验的同学来说并不陌生,android世界中的壳也是相同的存在.看下图(exe = dex):    概念清楚罗,我们就说下:壳最本质的功能就是实现加载器.你看加壳后,系统是先执 ...

  4. Jenkins反序列化漏洞复现

    Jenkins Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. Jenkins功能包括: 持 ...

  5. 使用jenkins一键打包发布vue项目

    jenkins的安装 Jenkins是一款开源 CI&CD 软件,用于自动化各种任务,包括构建.测试和部署软件. Jenkins 支持各种运行方式,可通过系统包.Docker 或者通过一个独立 ...

  6. 小程序中支持es7的async语法

    小程序中支持es7的async语法 es7的 async 号称是解决回调的最终⽅案 在⼩程序的开发⼯具中,勾选 es6转es5语法 下载 facebook的regenerator库中的 在⼩程序⽬录下 ...

  7. 关于MDI多文档程序的一些思考

    MDI程序的框架 客户窗口是一个预定义的窗口类(MDICLIENT),它是框架窗口的子窗口同时也是各个子文档窗口的父窗口.框架窗口和各个子文档窗口都是自定义的窗口类. MDI程序中的一些要点 窗口中的 ...

  8. 如何解决 shell 脚本重复执行的问题

    在开发过程中,经常会使用shell脚本去完成定时备份的任务,普遍的做法是通过系统的定时任务定时执行备份脚本 设想这样一种场景,本次备份时间到了,自动执行备份脚本,如果备份比较耗时的话,会一直持续到下一 ...

  9. c语言编程学习之字符串

    字符串字面量与字符变量 1.字符串字面量 字符串字面量是一对双引号括起来的字符序列.当c语言编译器在程序中遇到长度为n的字符串字面量时,它会为字符串字面量分配长度为n+1的内存空间.这块内存空间用来存 ...

  10. DOM 绑定事件

    // 1.获取事件源 var oDiv = document.getElementById('box'); console.log(oDiv); //2.事件 (1)直接绑定匿名函数 oDiv.onc ...