(搬运工)

逻辑回归(LR)与SVM的联系与区别

LR 和 SVM 都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题,如LR的Softmax回归用在深度学习的多分类中)

区别:

1、LR 是 参数模型,SVM是非参数模型,(svm中的 linear 和 rbf 是指线性可分和不可分的问题)

2、从目标函数来看,逻辑回归的目标是使得经验风险最小化,采用的是logistical loss,svm则是最大化分类间隔,使用的损失函数是合页损失( hinge损失):当样本点被正确分类且函数间隔大于1时,损失为0,否则损失是1-y(wx+b),即对于分类正确的样本也有一定的损失。其目标函数为 min  sum(1-y(wx+b)) + λ ||w||^2

逻辑回归基于概率理论,假设样本为正样本的概率可以用sigmoid函数(S型函数)来表示,然后通过极大似然估计的方法估计出参数的值。支持向量机基于几何间隔最大化原理,认为存在最大几何间隔的分类面为最优分类面。

这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。

直接依赖数据分布,每个样本点都会影响决策面的结果。如果训练数据不同类别严重不平衡,则一般需要先对数据做平衡处理,让不同类别的样本尽量平衡。

3、SVM的处理方法是只考虑支持向量,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类超平面较远的点的权重,相对提升了与分类最相关的数据点的权重。但是LR还是受到所有的数据点的影响。

4、逻辑回归相对来说模型更加简单,好理解,特别是大规模线性分类时比较方便。而SVM的理解和优化相对复杂,svm转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势较为明显,能够大大简化计算。LR算法里,每个样本点都必须参与分类决策的计算过程,也就是说,假设我们在LR里也运用核函数的原理,那么每个样本点都必须参与核计算,这带来的计算复杂度是相当高的。

5、logic能够做的svm都可以做,只是在准确率上有问题,svm能做的logic有时做不了

6、SVM 基于距离分类,LR 基于概率分类。SVM依赖数据表达的距离测度,所以需要对数据先做 normalization;LR不受其影响。

7、SVM的损失函数就自带正则,而 LR 必须另外在损失函数之外添加正则项。

联系:

1、都是判别模型,判别模型不关心数据是如何生成的,只关心信号之间的差别,然后用差别来简单对给定的信号进行分类。

2、都是监督学习模型。训练数据带有标记。

3、都是线性分类器,本质上都是求一个最佳分类超平面。


参考文献

[1] https://www.cnblogs.com/zhizhan/p/5038747.html

[2] http://blog.csdn.net/timcompp/article/details/62237986

机器学习-逻辑回归与SVM的联系与区别的更多相关文章

  1. 机器学习之感知器和线性回归、逻辑回归以及SVM的相互对比

    线性回归是回归模型 感知器.逻辑回归以及SVM是分类模型 线性回归:f(x)=wx+b 感知器:f(x)=sign(wx+b)其中sign是个符号函数,若wx+b>=0取+1,若wx+b< ...

  2. 线性回归,逻辑回归,神经网络,SVM的总结

    目录 线性回归,逻辑回归,神经网络,SVM的总结 线性回归,逻辑回归,神经网络,SVM的总结 详细的学习笔记. markdown的公式编辑手册. 回归的含义: 回归就是指根据之前的数据预测一个准确的输 ...

  3. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  4. 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

    在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...

  5. [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...

  6. 机器学习(九)—逻辑回归与SVM区别

    逻辑回归详细推导:http://lib.csdn.net/article/machinelearning/35119 面试常见问题:https://www.cnblogs.com/ModifyRong ...

  7. 感知器、逻辑回归和SVM的求解

    这篇文章将介绍感知器.逻辑回归的求解和SVM的部分求解,包含部分的证明.本文章涉及的一些基础知识,已经在<梯度下降.牛顿法和拉格朗日对偶性>中指出,而这里要解决的问题,来自<从感知器 ...

  8. 机器学习/逻辑回归(logistic regression)/--附python代码

    个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...

  9. 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)

    逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...

随机推荐

  1. 【LeetCode】1162. 地图分析 As Far from Land as Possible(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 这个题想考察什么? 剩下的任务就是套模板! 日期 题目 ...

  2. 【LeetCode】405. Convert a Number to Hexadecimal 解题报告(Java & Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 Java解法 Python解法 日期 题目地址:ht ...

  3. 【LeetCode】932. Beautiful Array 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 构造法 递归 相似题目 参考资料 日期 题目地址:h ...

  4. 【LeetCode】474. Ones and Zeroes 解题报告(Python)

    [LeetCode]474. Ones and Zeroes 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ ...

  5. 如何让 Spring Security 「少管闲事」

    记两种让 Spring Security「少管闲事」的方法. 遇到问题 一个应用对外提供 Rest 接口,接口的访问认证通过 Spring Security OAuth2 控制,token 形式为 J ...

  6. MySQL中视图的定义、原理--触发器

    视图概述 视图是一个虚拟表,其内容由查询定义.同真实的表一样,视图包含一系列带有名称的列和行数据.但是,视图并不在数据库中以存储的数据值集形式存在.行和列数据来自由定义视图的查询所引用的表,并且在引用 ...

  7. 【机器学习】Pandas库练习-获取yahoo金融苹果公司的股票数据

    # 获取yahoo金融苹果公司的股票数据. # 1.分析拉取的数据,找到收盘数据列的列名. # 2.绘制收盘价格柱状图. # 3.分析拉取的数据涨跌率,股价移动平均和波动率. # 4. 找出开盘价和收 ...

  8. Java的generator工具类,数据库生成实体类和映射文件

    首先需要几个jar包: freemarker-2.3.23.jar log4j-1.2.16.jar mybatis-3.2.3.jar mybatis-generator-core-1.3.2.ja ...

  9. Java初学者作业——编写Java程序,输入一个学生的5门课程的成绩,求其平均分。

    返回本章节 返回作业目录 需求说明: 编写Java程序,输入一个学生的5门课程的成绩,求其平均分.计算平均成绩,需要将每一门课程的成绩逐步累加到总成绩中,使用 for 循环实现,然后求出平均分. 实现 ...

  10. golang vue 使用 websocket 的例子

    一. 编写golang服务端 1.导入必要的websocket包,golang.org/x/net/websocket 或 github.com/golang/net/websocket 2.编写消息 ...