洛谷3721 HNOI2017单旋(LCT+set+思维)
这题难道不是spaly裸题吗?
言归正传QWQ
一看到这个题目,其实第一反应是很懵X的
从来没有见过类似的题目啊,什么\(spaly\),单旋。QWQ很懵逼啊
不过,我们可以注意到这么一件事情,就是我们对于树中元素移动的时候,只会移动\(min或者max\)。
那么会不会有什么性质呢
QWQ
经过手玩,以\(max\)为栗,我们可以发现我们将这个点单旋到根的话,相当于就是说保持的原树的形态不变,把\(max\)的左儿子连到\(max\)的父亲,然后删除这个点,然后把\(root\)接到\(max\)的左儿子上。
最小值和最大值同理
这不就是一个\(link\)和一个\(cut\)吗QWQ
所以直接可以上\(LCT\)
每次代价,就是从当前点到根的距离
我们现在考虑怎么插入
有一个结论是,插入的时候一定会插到前驱和后继中深度比较大的那个的对应儿子。
因为因为前驱和后继一定是父子关系,只有深的那个才可能出现合法位置的空儿子
QWQ另外的话就是一些细节了
需要除了\(LCT\)之外,再维护原树的形态和\(fa\)的两个数组
然后实时维护一个\(root\),表示原树的根。每次操作完都\(makeroot\),便于计算路径长度
剩下的还是直接去看代码吧
QWQ
感觉这个题很好啊,思维挺不错的
细节也有不少
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk makr_pair
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 3e5+1e2;
struct Node
{
int opt,val;
};
Node a[maxn];
int ch[maxn][3];//LCT中的父子关系
int fa[maxn];
int zuzong[maxn];//spaly中的父子关系
int son[maxn][3];
int n,m;
int rev[maxn],st[maxn],size[maxn];
set<int> s;
int b[maxn];
int cnt;
int root;
int sson(int x)
{
if (ch[fa[x]][0]==x) return 0;
else return 1;
}
bool notroot(int x)
{
return ch[fa[x]][0]==x || ch[fa[x]][1]==x;
}
void update(int x)
{
if (!x) return;
size[x]=size[ch[x][0]]+size[ch[x][1]]+1;
}
void reverse(int x)
{
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
}
void pushdown(int x)
{
if(rev[x])
{
if (ch[x][0]) reverse(ch[x][0]);
if (ch[x][1]) reverse(ch[x][1]);
rev[x]=0;
}
}
void rotate(int x)
{
int y=fa[x],z=fa[y];
int b=sson(x),c=sson(y);
if (notroot(y)) ch[z][c]=x;
fa[x]=z;
ch[y][b]=ch[x][!b];
fa[ch[x][!b]]=y;
ch[x][!b]=y;
fa[y]=x;
update(y);
update(x);
}
void splay(int x)
{
int y=x,cnt=0;
st[++cnt]=y;
while (notroot(y)) y=fa[y],st[++cnt]=y;
while (cnt) pushdown(st[cnt--]);
while (notroot(x))
{
int y=fa[x],z=fa[y];
int b=sson(x),c=sson(y);
if (notroot(y))
{
if(b==c) rotate(y);
else rotate(x);
}
rotate(x);
//cout<<x<<endl;
}
update(x);
}
void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
ch[x][1]=y;
update(x);
}
}
void makeroot(int x)
{
access(x);
splay(x);
reverse(x);
}
int findroot(int x)
{
access(x);
splay(x);
while (ch[x][0])
{
pushdown(x);
x=ch[x][0];
}
return x;
}
void split(int x,int y)
{
makeroot(x);
access(y);
splay(y);
}
void link(int x,int y)
{
if (!x || !y) return;
makeroot(x);
if (findroot(y)!=x)
fa[x]=y;
}
void cut(int x,int y)
{
if (!x || !y) return;
split(x,y);
if (ch[x][0] || ch[x][1] || fa[x]!=y || ch[y][1]) return;
fa[x]=ch[y][0]=0;
update(y);
}
int query(int x)
{
access(x);
splay(x);
return size[x];
}
int main()
{
n=read();
for (int i=1;i<=n;i++)
{
a[i].opt=read();
if (a[i].opt==1) a[i].val=read(),b[++cnt]=a[i].val;
}
sort(b+1,b+1+cnt);
for (int i=1;i<=n;i++)
if(a[i].opt==1) a[i].val=lower_bound(b+1,b+1+cnt,a[i].val)-b; //离散化,权值既是编号
for (int i=1;i<=n;i++)
{
if (a[i].opt==1)
{
int lyf,ymh=0;
if (s.size()==0)
{
cout<<1<<"\n";
s.insert(a[i].val);
root=a[i].val;
continue;
}
set<int> :: iterator now = s.upper_bound(a[i].val);
if(now!=s.end())
{
//ymh=max(ymh,query(*now));
if (query(*now)>=ymh) ymh=query(*now),lyf=*now;
}
if(now!=s.begin())
{
--now;
if (query(*now)>=ymh) ymh=query(*now),lyf=*now;
}
//插入的时候,应该找到前驱和后继深度较深的那个,然后插入
//因为前驱和后继一定是父子关系,只有深的那个 才可能出现合法位置的空儿子
cout<<ymh+1<<"\n";
zuzong[a[i].val]=lyf;
son[lyf][lyf<a[i].val]=a[i].val;
s.insert(a[i].val);
link(a[i].val,lyf);
}
if (a[i].opt==2)
{
int now = *(s.begin());
int faa = zuzong[now];
int ss = son[now][1];
cout<<query(now)<<"\n";
if (now==root) continue;
cut(now,faa);
cut(now,ss);
link(ss,faa);
link(root,now);
zuzong[root]=now;
zuzong[now]=0;
son[now][1]=root;
zuzong[ss]=faa;
son[faa][0]=ss;
root=now;
//找到最小值,然后手动修改原树的父子关系,然后暴力link和cut
}
if (a[i].opt==3)
{
int now = *(s.rbegin());
int faa = zuzong[now];
int ss = son[now][0];
cout<<query(now)<<"\n";
if (now==root) continue;
cut(now,faa);
cut(now,ss);
link(ss,faa);
link(root,now);
zuzong[root]=now;
zuzong[now]=0;
son[now][0]=root;
zuzong[ss]=faa;
son[faa][1]=ss;
root=now;
//和最小值同理
}
if(a[i].opt==4)
{
set<int> :: iterator pos = s.begin();
int now = *(s.begin());
int faa = zuzong[now];
int ss = son[now][1];
cout<<query(now)<<"\n";
cut(now,faa);
cut(now,ss);
link(ss,faa);
zuzong[ss]=faa;
son[faa][0]=ss;
son[now][0]=son[now][1]=zuzong[now]=0;
s.erase(now);
if (root==now) root=ss;
}
if (a[i].opt==5)
{
int now = *(s.rbegin());
int faa = zuzong[now];
int ss = son[now][0];
cout<<query(now)<<"\n";
cut(now,faa);
cut(now,ss);
link(ss,faa);
zuzong[ss]=faa;
son[faa][1]=ss;
son[now][0]=son[now][1]=zuzong[now]=0;
s.erase(now);
if (root==now) root=ss;
}
makeroot(root);
}
return 0;
}
洛谷3721 HNOI2017单旋(LCT+set+思维)的更多相关文章
- bzoj 4825: [Hnoi2017]单旋 [lct]
4825: [Hnoi2017]单旋 题意:有趣的spaly hnoi2017刚出来我就去做,当时这题作死用了ett,调了5节课没做出来然后发现好像直接用lct就行了然后弃掉了... md用lct不知 ...
- 【LG3721】[HNOI2017]单旋
[LG3721][HNOI2017]单旋 题面 洛谷 题解 20pts 直接模拟\(spaly\)的过程即可. 100pts 可以发现单旋最大.最小值到根,手玩是有显然规律的,发现只需要几次\(lin ...
- 4825: [Hnoi2017]单旋
4825: [Hnoi2017]单旋 链接 分析: 以后采取更保险的方式写代码!!!81行本来以为不特判也可以,然后就总是比答案大1,甚至出现负数,调啊调啊调啊调~~~ 只会旋转最大值和最小值,以最小 ...
- [BZOJ4825][HNOI2017]单旋(线段树+Splay)
4825: [Hnoi2017]单旋 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 667 Solved: 342[Submit][Status][ ...
- 【BZOJ4825】[Hnoi2017]单旋 线段树+set
[BZOJ4825][Hnoi2017]单旋 Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能 ...
- 洛谷 P3721 - [AH2017/HNOI2017]单旋(LCT)
洛谷题面传送门 终于调出来这道题了,写篇题解( 首先碰到这样的题我们肯定要考虑每种操作会对树的形态产生怎样的影响: 插入操作:对于 BST 有一个性质是,当你插入一个节点时,其在 BST 上的父亲肯定 ...
- bzoj P4825 [Hnoi2017]单旋——solution
Description H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据 结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的 ...
- HNOI2017 单旋
题目描述 网址:https://www.luogu.org/problemnew/show/3721 大意: 有一颗单旋Splay(Spaly),以key值为优先度,总共有5个操作. [1] 插入一个 ...
- HNOI2017单旋
单旋 这道题做法贼多,LCT,splay,线段树什么的貌似都行. 像我这种渣渣只会线段树了(高级数据结构学了也不会用). 首先离线所有操作,因为不会有两个点值重复,所以直接离散. 一颗线段树来维护所有 ...
随机推荐
- Python实现GPU加速的基本操作
技术背景 之前写过一篇讲述如何使用pycuda来在Python上写CUDA程序的博客.这个方案的特点在于完全遵循了CUDA程序的写法,只是支持了一些常用函数的接口,如果你需要自己写CUDA算子,那么就 ...
- 24点游戏(24 game)的C++编程求解实现
什么是24点游戏 24点游戏,英文叫做24 game,是对给定的4个非负整数进行加减乘除运算,要求每个数都要被用到且仅用到一次,并得到最终的运算结果为24.比如3.8.3.8这四个数,可以找出唯一的一 ...
- Python中的私有属性私有方法、类属性类方法以及单例设计模式
私有属性是对象不希望公开的属性,私有方法是对象不希望公开的方法.在定义私有属性和私有方法时,在属性或者方法前,加上__(两个下划线) 公有方法可以通过对象名直接调用,私有方法不能通过对象名直接调用,只 ...
- 问题:idea 中文无法使用
1. 问题--idea无法使用中文输入 原因:idea本身版本过高,所以需要你强制减低它的jdk版本 解决:使用配置idea环境变量解决 ps:目前适用于任何版本的jdk和idea 步骤: 1.新建 ...
- Python图像分割之区域增长法
原文链接:https://blog.csdn.net/sgzqc/article/details/119682864 一.简介 区域增长法是一种已受到计算机视觉界十分关注的图像分割方法.它是以区域为处 ...
- python获取邮件信息
在项目的Terminal中注册模块pypiwin32 python -m pip install pypiwin32 import win32com.client outlook = win32com ...
- 【第五篇】-Maven 构建配置文件之Spring Cloud直播商城 b2b2c电子商务技术总结
Maven 构建配置文件 构建配置文件是一系列的配置项的值,可以用来设置或者覆盖 Maven 构建默认值. 使用构建配置文件,你可以为不同的环境,比如说生产环境(Production)和开发(Deve ...
- 在windows中给git修改默认的编辑器为sublime
首先,需要配置sublime的为环境变量,这是为了让git能通过命令调用sublime.也可以写一个.bat脚本.然后,让git调用bat脚本也可以 配置环境变量path到subl.exe的目录 脚本 ...
- Docker 安装 MySQL5.6
方法一.docker pull mysql查找Docker Hub上的mysql镜像 #docker search mysql 这里我们拉取官方的镜像,标签为5.6 #docker pull mysq ...
- DEDEcms手机网站添加详情内页上一页/下一页的翻页功能
修改文件include/arc.archives.class.php文件. 1.搜索 function GetPreNext($gtype='') 2.将这个函数的所有内容替换为 function G ...