拿到一道题,先写出状态转移方程,再优化时间复杂度

状态优化:

对于状态可累加

\(e.g.dp[i+j]=dp[i]+dp[j]+i+j\)

的,用倍增优化

决策优化:

\(e.g.dp[i][j]=\max(dp[i-1][j-233]+(j-233)^2,dp[i-1][j-232]+(j-232)^2,...,dp[i-1][j]+j^2)\)

单调队列优化

\(e.g.dp[i]=\max(dp[1]+i,dp[2]+2i,...,dp[i-1]+(i-1)i)\)

斜率优化

交叉小于包含

\(e.g.dp[i][j]=\max(dp[i][i]+dp[i+1][j],dp[i][i+1]+dp[i+2][j],...,dp[i][j-1]+dp[j-1][j],dp[i][j]+dp[j][j])\)

用四边形不等式优化

关于dp那些事的更多相关文章

  1. UVa 12683 Odd and Even Zeroes(数论+数字DP)

    意甲冠军: 要求 小于或等于n号码 (0<=n <= 1e18)尾数的数的阶乘0数为偶数 思考:当然不是暴力,因此,从数论.尾数0数为偶数,然后,它将使N阶乘5电源是偶数.(二指数肯定少5 ...

  2. android dp深度解析(转)

    我转载地方的连接:http://zhangkun716717-126-com.iteye.com/blog/1772696  当笔记记录一下 dip: device independent pixel ...

  3. 雷神领域(并查集真是个好东西)并查集+流氓dp

    考场上,整整看了半个小时以上的题目!!! 化简题意: 给定一个全0矩阵,一些坐标点(x,y)为1,当三个点可以构成一个直角三角形时(直角边长为整数)拓展为一个矩形,之后从(0,0)出发,求最多的占用行 ...

  4. 【题解】P1291 百事世界杯之旅 - 期望dp

    P1291 [SHOI2002]百事世界杯之旅 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 "--在 \ ...

  5. 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP

    题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...

  6. 洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)

    题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...

  7. LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)

    传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...

  8. 关于一些基础的dp——硬币的那些事(dp的基本引入)

    1.最少硬币问题大体题意: 有n种硬币,面值分别是v1,v2......vn,数量无限,输入一个非负整数s,选用硬币使其和为s,要求输出最少的硬币组合. 我们可以这样分析: 定义一个名为Min[s]的 ...

  9. 2018.10.15 NOIP训练 百事世界杯之旅(期望dp)

    传送门 期望题. 其实跟dpdpdp关系并不大. 考虑f[i]f[i]f[i]表示已经凑出了iii个需要的次数. 显然有:f[i]=ni∗f[i]+nn−i∗f[i+1]+1f[i]=\frac {n ...

随机推荐

  1. Java | 个人总结的Java常用API手册汇总

    目录 常用API JavaAPI 1 java.lang String StringBuilder Integer parseXxx Math Object System Throwable Thre ...

  2. WPF路由事件

    ​    这节讲一下WPF中的路由事件(Routed Event). [什么是事件] 在了解路由事件前,我们应先来了解一下什么是事件(Event). 在Windows系统中,像鼠标单击,双击,移动这样 ...

  3. 优先队列PriorityQueue&Lambda&Comparator

    今天翻阅<Labuladuo的算法小抄>时发现在使用优先队列的PriorityQueue解决一道hard题时(leetCode 23),出现了如下代码: ListNode mergeKLi ...

  4. Ubuntu下 QT中配置ROS-Kinetic

    打开qtcreater自动加载ros环境,通过修改*.desktop文件 gedit ~/.local/share/applications/qtcreator.desktop 将其中Exec=XXX ...

  5. MongoDB(6)- BSON 数据类型

    BSON BSON是一种二进制序列化格式,用于在 MongoDB 中存储文档和进行远程过程调用 跟 JSON 的数据结构很像,但是支持更丰富的数据类型 数据类型 数据类型 序号 别名 备注 Doubl ...

  6. DPDK 无锁环形队列(Ring)详解

    DPDK 无锁环形队列(Ring) 此篇文章主要用来学习和记录DPDK中无锁环形队列相关内容,结合了官方文档说明和源码中的实现,供大家交流和学习. Author : Toney Email : vip ...

  7. python模块--__future__(向上兼容模块)

    py2.7   unicode_literals 将字符串默认视为unicode, 即u'xxx'和'xxx'将是一样的, 而再想表示字节需用b'xxx'表示 division / 将表示正常除法操作 ...

  8. .Net core 的热插拔机制的深入探索,以及卸载问题求救指南.

    .Net core 的热插拔机制的深入探索,以及卸载问题求救指南. 一.依赖文件*.deps.json的读取. 依赖文件内容如下.一般位于编译生成目录中 { "runtimeTarget&q ...

  9. vmware workstation16许可证密钥

    ZF3R0-FHED2-M80TY-8QYGC-NPKYFYF390-0HF8P-M81RQ-2DXQE-M2UT6ZF71R-DMX85-08DQY-8YMNC-PPHV8FA1M0-89YE3-0 ...

  10. OpenGL渲染管道,Shader,VAO&VBO&EBO

    OpenGL渲染管线 (也就是)OpenGL渲染一帧图形的流程 以下列举最简单的,渲染一个三角形的流程,你可以将它视为 精简版OpenGL渲染管线 更复杂的流程也仅仅就是:在此基础上的各个流程中 添加 ...