迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止

###基本思想

  1. 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

  2. 此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

  3. 初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 … 重复该操作,直到遍历完所有顶点。

###操作步骤

  1. 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

  2. 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

  3. 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

  4. 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

###图解

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。以下B节点中23应为13。

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!

第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。

###代码
邻接矩阵为例,

// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph; // 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;

Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。
例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
EData是邻接矩阵边对应的结构体。

####Dijkstra算法

/*
* Dijkstra最短路径。
* 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
*
* 参数说明:
* G -- 图
* vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
* prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
* dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
*/
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
int i,j,k;
int min;
int tmp;
int flag[MAX]; // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。 // 初始化
for (i = 0; i < G.vexnum; i++)
{
flag[i] = 0; // 顶点i的最短路径还没获取到。
prev[i] = 0; // 顶点i的前驱顶点为0。
dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
} // 对"顶点vs"自身进行初始化
flag[vs] = 1;
dist[vs] = 0; // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
for (i = 1; i < G.vexnum; i++)
{
// 寻找当前最小的路径;
// 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
min = INF;
for (j = 0; j < G.vexnum; j++)
{
if (flag[j]==0 && dist[j]<min)
{
min = dist[j];
k = j;
}
}
// 标记"顶点k"为已经获取到最短路径
flag[k] = 1; // 修正当前最短路径和前驱顶点
// 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
for (j = 0; j < G.vexnum; j++)
{
tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
if (flag[j] == 0 && (tmp < dist[j]) )
{
dist[j] = tmp;
prev[j] = k;
}
}
} // 打印dijkstra最短路径的结果
printf("dijkstra(%c): \n", G.vexs[vs]);
for (i = 0; i < G.vexnum; i++)
printf(" shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

数据结构--Dijkstra算法最清楚的讲解的更多相关文章

  1. 深入浅出数据结构C语言版(1)——什么是数据结构及算法

    在很多数据结构相关的书籍,尤其是中文书籍中,常常把数据结构与算法"混合"起来讲,导致很多人初学时对于"数据结构"这个词的意思把握不准,从而降低了学习兴趣和学习信 ...

  2. 用python语言讲解数据结构与算法

    写在前面的话:关于数据结构与算法讲解的书籍很多,但是用python语言去实现的不是很多,最近有幸看到一本这样的书籍,由Brad Miller and David Ranum编写的<Problem ...

  3. [0x00 用Python讲解数据结构与算法] 概览

    自从工作后就没什么时间更新博客了,最近抽空学了点Python,觉得Python真的是很强大呀.想来在大学中没有学好数据结构和算法,自己的意志力一直不够坚定,这次想好好看一本书,认真把基本的数据结构和算 ...

  4. Dijkstra算法模拟讲解

    dijkstra算法,是一个求单源最短路径算法 其算法的特点为: 层层逼进,有点类似宽度搜索的感觉 其需要的数据结构为:                  int map[N][N] 所有点之间的权表 ...

  5. 数据结构与算法系列研究七——图、prim算法、dijkstra算法

    图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph ...

  6. 数据结构与算法(九):AVL树详细讲解

    数据结构与算法(一):基础简介 数据结构与算法(二):基于数组的实现ArrayList源码彻底分析 数据结构与算法(三):基于链表的实现LinkedList源码彻底分析 数据结构与算法(四):基于哈希 ...

  7. 数据结构与算法--最短路径之Dijkstra算法

    数据结构与算法--最短路径之Dijkstra算法 加权图中,我们很可能关心这样一个问题:从一个顶点到另一个顶点成本最小的路径.比如从成都到北京,途中还有好多城市,如何规划路线,能使总路程最小:或者我们 ...

  8. 数据结构实验之图论七:驴友计划 ( 最短路径 Dijkstra 算法 )

    数据结构实验之图论七:驴友计划 Time Limit: 1000 ms           Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...

  9. Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...

随机推荐

  1. CF1539A Contest Start[题解]

    Contest Start 题目大意 有 \(n\) 个人报名参加一个比赛,从 \(0\) 时刻开始每隔 \(x\) 分钟有一个人开始比赛,每个人参赛时间相同,均为 \(t\) .定义一个选手的不满意 ...

  2. 基于腾讯云Serverless的HTTP服务探活函数

    本文基于 Golang 开发了一款简单易用的拨测云函数,入口函数与腾讯云 Serverless SDK 绑定.与目前腾讯云中默认的拨测函数不同的是, url-tester-func 支持非 200 响 ...

  3. 家庭账本开发day04

    对之前的构架进行修改,对成员类新加属性余额,在进行账单的新增时 ,对余额进行相应的修改.并且对账单类加入属性:id方便之后的查询和 删除操作

  4. 微信小程序云开发-云存储-上传文件(图片/视频)到云存储 精简代码

    说明 图片/视频这类文件是从客户端会话选择文件. 一.wxml文件添加if切换显示 <!--上传文件到云存储--> <button bindtap="chooseImg&q ...

  5. Java 使用新方法打印Word文档

    前言 我曾写过一篇文章,它主要介绍了如何通过物理打印机和虚拟打印机来打印Word文档.今天这篇教程将介绍一种新的方法来实现对Word文档的打印. 此次使用到的类库仍然是Spire.Doc for Ja ...

  6. 【Uva1025 A Spy in the Metro】动态规划

    题目描述 某城市地铁是线性的,有n(2≤n≤50)个车站,从左到右编号1~n.有M1辆列车从第1站开始往右开,还有M2辆列车从第n站开始往左开.列车在相邻站台间所需的运行时间是固定的,因为所有列车的运 ...

  7. 单点登录详解(token简述)(七)

    前言 为什么整理单点登录? 主要的原因还是自己以前学习的时候曾经用过,但是时间太久,忘记了里面用到了哪些技术.及如何实现的,每次想到单点登录总是感觉即会又不会,这次整理session时,又涉及到了单点 ...

  8. Servlet 单例多线程详解(六)

    一.Servlet 单例多线程 Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的时候(或客户端发送请求到服务器时),Servl ...

  9. python开发,注意事项

    提高python代码运行效率 1.使用生成器,节约内存.[一边循环一边计算的机制,称为生成器:generator] 例: .如何创建生成器 1.只要把一个列表生成式的[]改成(),就创建了一个gene ...

  10. Django模板中变量的运算

    在django中的模板下我们知道变量使用{{xxx}}来呈现,可是当出现两个变量进行运算怎么处理那? #加法: {{value|add:value2}} #返回的结果是value+value2的值,假 ...