题目地址:http://poj.org/problem?id=2127

Description

You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal possible length.


Sequence S1 , S2 , . . . , SN of length N is called an increasing subsequence of a sequence A1 , A2 , . . . , AM of length M if there exist 1 <= i1 < i2 < . . . < iN
<= M such that Sj = Aij for all 1 <= j <= N , and Sj < Sj+1 for all 1 <= j < N .

Input

Each sequence is described with M --- its length (1 <= M <= 500) and M integer numbers Ai (-231 <= Ai < 231 ) --- the sequence itself.

Output

On the first line of the output file print L --- the length of the greatest common increasing subsequence of both sequences. On the second line print the subsequence itself. If there are several possible answers, output any of
them.

Sample Input

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2
1 4

状态dp[i][j]表示seq1[i]从1到i与seq2[j]从1到j并以j为结尾的LCIS的长度

状态转移方程:

dp[i][j] = max(dp[i][k]) + 1, if seq1[i] ==seq2[j], 1 <= k  < j

dp[i][j] = dp[i-1][j], if seq1[i] != seq2[j]

#include <stdio.h>
#include <string.h> #define MAX 501 typedef struct path{
int x, y;
}Pre; int seq1[MAX], seq2[MAX];
int len1, len2;
int dp[MAX][MAX]; //状态dp[i][j]记录seq1前i个与seq2前j个并以seq2[j]为结尾的LCIS的长度
Pre pre[MAX][MAX];//pre[i][j]记录前驱
int path[MAX];//根据pre[i][j]回溯可得到LCIS
int index; int LCIS(){
int i, j;
int max, tx, ty;
int id_x, id_y;
int tmpx, tmpy;
//给dp[i][j]、pre[i][j]置初值
memset(dp, 0, sizeof(dp));
memset(pre, 0, sizeof(pre));
for (i = 1; i <= len1; ++i){
max = 0;
tx = ty = 0;
for (j = 1; j <= len2; ++j){
//状态转移方程
dp[i][j] = dp[i-1][j];
pre[i][j].x = i - 1;
pre[i][j].y = j;
if (seq1[i] > seq2[j] && max < dp[i-1][j]){
max = dp[i-1][j];
tx = i - 1;
ty = j;
}
if (seq1[i] == seq2[j]){
dp[i][j] = max + 1;
pre[i][j].x = tx;
pre[i][j].y = ty;
}
}
}
//找到LCIS最后的数字的位置
max = -1;
for (i = 1; i <= len2; ++i){
if (dp[len1][i] > max){
max = dp[len1][i];
id_y = i;
}
}
id_x = len1;
index = 0;
while (dp[id_x][id_y] != 0){
tmpx = pre[id_x][id_y].x;
tmpy = pre[id_x][id_y].y;
//若找到前一对公共点,则添加进路径
if (dp[tmpx][tmpy] != dp[id_x][id_y]){
path[index] = seq2[id_y];
++index;
}
id_x = tmpx;
id_y = tmpy;
}
return max;
} int main(void){
int i;
while (scanf("%d", &len1) != EOF){
for (i = 1; i <= len1; ++i)
scanf("%d", &seq1[i]);
scanf("%d", &len2);
for (i = 1; i <= len2; ++i)
scanf("%d", &seq2[i]); printf("%d\n", LCIS());
--index;
if (index >= 0)
printf("%d", path[index]);
for (i = index - 1; i >= 0; --i){
printf(" %d", path[i]);
}
printf("\n");
} return 0;
}

POJ 2127 Greatest Common Increasing Subsequence -- 动态规划的更多相关文章

  1. POJ 2127 Greatest Common Increasing Subsequence

    You are given two sequences of integer numbers. Write a program to determine their common increasing ...

  2. 最长公共上升子序列 (poj 2127) (Greatest Common Increasing Subsequence)

    \(Greatest Common Increasing Subsequence\) 大致题意:给出两个长度不一定相等的数列,求其中最长的公共的且单调递增的子序列(需要具体方案) \(solution ...

  3. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  4. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  5. POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  6. LCIS POJ 2172 Greatest Common Increasing Subsequence

    题目传送门 题意:LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列 分析:a[i] != b[j]: dp[i][j] = dp[i-1][j ...

  7. HDU 1423 Greatest Common Increasing Subsequence ——动态规划

    好久以前的坑了. 最长公共上升子序列. 没什么好说的,自己太菜了 #include <map> #include <cmath> #include <queue> ...

  8. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

  9. HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

随机推荐

  1. Config the Android 5.0 Build Environment

    In this document Choosing a Branch    Setting up a Linux build environment        Installing the JDK ...

  2. SAP TAX CODE 自动计算税金(BAPI_ACC_DOCUMENT_POST CALCULATE_TAX_FROM_GROSSAMOUNT)

    CALL FUNCTION 'CALCULATE_TAX_FROM_GROSSAMOUNT' EXPORTING i_bukrs = ' "公司代码 i_mwskz = 'X1' " ...

  3. android133 360 06 一键锁频,清楚数据

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools= ...

  4. android131 360 02 设置中心

    // 判断是否需要自动更新 boolean autoUpdate = mPref.getBoolean("auto_update", true); if (autoUpdate) ...

  5. C_数据结构_链表的链式实现

    传统的链表不能实现数据和链表的分离,一旦数据改变则链表就不能用了,就要重新开发. 如上说示:外层是Teacher,里面小的是node. #ifndef _MYLINKLIST_H_ #define _ ...

  6. IDispatch接口介绍

    1.         C程序调用时,调用者必须预先知道接口规范(如,参数类型.参数字节长度.参数顺序等).由于不同语言这些规范有所不同,COM未解决不同语言之间调用,提供了IDispatch接口. 2 ...

  7. PHP端验证代码、后端验证

    /** * 验证url是否存在 * @param string $url url路径 * @return boolean true:存在,false:不存在 */ public function va ...

  8. com.domain.bean

    package com.domain.bean; import java.util.LinkedHashMap; import java.util.Map; public class TmpBean ...

  9. Java基础知识强化之多线程笔记05:Java程序运行原理 和 JVM的启动是多线程的吗

    1. Java程序运行原理:     Java 命令会启动Java 虚拟机,启动 JVM,等于启动了一个应用程序,也就是启动了一个进程.该进程会自动启动一个 “主线程” ,然后主线程去调用某个类的 m ...

  10. 关于SWT中的GridLayout布局方式

    GridLayout 布局的功能非常强大,也是笔者常用的一种布局方式.GridLayout是网格式布局,它把父组件分成一个表格,默认情况下每个子组件占据一个单元格的空间,每个子组件按添加到父组件的顺序 ...