题目地址:http://poj.org/problem?id=2127

Description

You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal possible length.


Sequence S1 , S2 , . . . , SN of length N is called an increasing subsequence of a sequence A1 , A2 , . . . , AM of length M if there exist 1 <= i1 < i2 < . . . < iN
<= M such that Sj = Aij for all 1 <= j <= N , and Sj < Sj+1 for all 1 <= j < N .

Input

Each sequence is described with M --- its length (1 <= M <= 500) and M integer numbers Ai (-231 <= Ai < 231 ) --- the sequence itself.

Output

On the first line of the output file print L --- the length of the greatest common increasing subsequence of both sequences. On the second line print the subsequence itself. If there are several possible answers, output any of
them.

Sample Input

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2
1 4

状态dp[i][j]表示seq1[i]从1到i与seq2[j]从1到j并以j为结尾的LCIS的长度

状态转移方程:

dp[i][j] = max(dp[i][k]) + 1, if seq1[i] ==seq2[j], 1 <= k  < j

dp[i][j] = dp[i-1][j], if seq1[i] != seq2[j]

#include <stdio.h>
#include <string.h> #define MAX 501 typedef struct path{
int x, y;
}Pre; int seq1[MAX], seq2[MAX];
int len1, len2;
int dp[MAX][MAX]; //状态dp[i][j]记录seq1前i个与seq2前j个并以seq2[j]为结尾的LCIS的长度
Pre pre[MAX][MAX];//pre[i][j]记录前驱
int path[MAX];//根据pre[i][j]回溯可得到LCIS
int index; int LCIS(){
int i, j;
int max, tx, ty;
int id_x, id_y;
int tmpx, tmpy;
//给dp[i][j]、pre[i][j]置初值
memset(dp, 0, sizeof(dp));
memset(pre, 0, sizeof(pre));
for (i = 1; i <= len1; ++i){
max = 0;
tx = ty = 0;
for (j = 1; j <= len2; ++j){
//状态转移方程
dp[i][j] = dp[i-1][j];
pre[i][j].x = i - 1;
pre[i][j].y = j;
if (seq1[i] > seq2[j] && max < dp[i-1][j]){
max = dp[i-1][j];
tx = i - 1;
ty = j;
}
if (seq1[i] == seq2[j]){
dp[i][j] = max + 1;
pre[i][j].x = tx;
pre[i][j].y = ty;
}
}
}
//找到LCIS最后的数字的位置
max = -1;
for (i = 1; i <= len2; ++i){
if (dp[len1][i] > max){
max = dp[len1][i];
id_y = i;
}
}
id_x = len1;
index = 0;
while (dp[id_x][id_y] != 0){
tmpx = pre[id_x][id_y].x;
tmpy = pre[id_x][id_y].y;
//若找到前一对公共点,则添加进路径
if (dp[tmpx][tmpy] != dp[id_x][id_y]){
path[index] = seq2[id_y];
++index;
}
id_x = tmpx;
id_y = tmpy;
}
return max;
} int main(void){
int i;
while (scanf("%d", &len1) != EOF){
for (i = 1; i <= len1; ++i)
scanf("%d", &seq1[i]);
scanf("%d", &len2);
for (i = 1; i <= len2; ++i)
scanf("%d", &seq2[i]); printf("%d\n", LCIS());
--index;
if (index >= 0)
printf("%d", path[index]);
for (i = index - 1; i >= 0; --i){
printf(" %d", path[i]);
}
printf("\n");
} return 0;
}

POJ 2127 Greatest Common Increasing Subsequence -- 动态规划的更多相关文章

  1. POJ 2127 Greatest Common Increasing Subsequence

    You are given two sequences of integer numbers. Write a program to determine their common increasing ...

  2. 最长公共上升子序列 (poj 2127) (Greatest Common Increasing Subsequence)

    \(Greatest Common Increasing Subsequence\) 大致题意:给出两个长度不一定相等的数列,求其中最长的公共的且单调递增的子序列(需要具体方案) \(solution ...

  3. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  4. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  5. POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  6. LCIS POJ 2172 Greatest Common Increasing Subsequence

    题目传送门 题意:LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列 分析:a[i] != b[j]: dp[i][j] = dp[i-1][j ...

  7. HDU 1423 Greatest Common Increasing Subsequence ——动态规划

    好久以前的坑了. 最长公共上升子序列. 没什么好说的,自己太菜了 #include <map> #include <cmath> #include <queue> ...

  8. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

  9. HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

随机推荐

  1. JS基础DOM篇之一:何为DOM?

    近日在园子看了一篇文章,一位前端负责人问应聘者何为DOM事件流的三个阶段,我当时一看也是懵圈,于是强迫症复发,遂想要搞清楚它.谁知在查资料的过程中发现有好多关于DOM的概念也是模糊不清,便决定继续延伸 ...

  2. linux tomcat自启动设置

    国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html内部邀请码:C8E245J (不写邀请码,没有现金送)国内私 ...

  3. 对get_baserel_parampathinfo函数的学习

    /* * get_baserel_parampathinfo * Get the ParamPathInfo for a parameterized path for a base relation, ...

  4. tableview 上拉时 标题行出现在顶部不动效果

    类似这种效果: 其实很简单,利用tableview 的plain属性,然后使用section,其实滑上去不动的是  section的headView. -(NSInteger)numberOfSect ...

  5. 【转】linux中的sed命令

    转自:http://www.cnblogs.com/shineshqw/articles/1978122.html 功能说明: 利用script来处理文本文件. 语 法:sed [-hnV][-e&l ...

  6. javasctipt显示几分钟前、几天前等

    jsp页面: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> ...

  7. php join函数使用,很是方便

    以前数组转换成用逗号隔开的字符串都是自己写一个数组,最后还要去除多余的一个逗号,好麻烦. 无意中发现join函数,原来一句话就可以了. $_array = array('a','b','c','d', ...

  8. Android开发心得(转)

    前言: 很早以前,就听人说过android以后会火起来,作为一个前瞻性对它有所了解会是一个转型的好机会,javaweb太成熟饱和了,现在市面上各种android手机层出不穷,网上各种android视频 ...

  9. [001]const和指针

    很经典的: const int* p: int* const p: 前者表示指针指向的值是const,指向的值不可变,但是指针本身是可变的:后者表示改指针是const,指针不可变,但是指向的值是可变的 ...

  10. 【排障】编译安装Mysql并使用自启动脚本mysqld后报错

    本文用于记录在某次个人实验搭建DZ论坛,在编译安装部署mysql环节时出的错到最终排除错误的过程, 前面采用DZ官网所采用的编译安装mysql的过程就省去,主要从报错处开始讲述. (题外话,经此一役后 ...