HDU-3864 D_num Miller_Rabin和Pollard_rho
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3864
题意:给定一个数n,求n的因子只有四个的情况。
Miller_Rabin和Pollard_rho模板题,复杂度O(n^(1/4)),注意m^3=n的情况。
//STATUS:C++_AC_62MS_232KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef long long LL;
typedef unsigned long long ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e15;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End LL factor[]; //质因数分解结果(刚返回时是无序的)
int tol; //质因数的个数。数组小标从0开始
const int S=; LL gcd(LL a,LL b)
{
if(a==)return ;
if(a<) return gcd(-a,b);
while(b)
{
LL t=a%b;
a=b;
b=t;
}
return a;
} LL mult_mod(LL a,LL b,LL c)
{
a%=c;
b%=c;
LL ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
} //计算 x^n %c
LL pow_mod(LL x,LL n,LL mod)//x^n%c
{
if(n==)return x%mod;
x%=mod;
LL tmp=x;
LL ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
}
//以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(LL a,LL n,LL x,LL t)
{
LL ret=pow_mod(a,x,n);
LL last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;
bool Miller_Rabin(LL n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
LL x=n-;
LL t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
LL a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} LL Pollard_rho(LL x,LL c)
{
LL i=,k=;
LL x0=rand()%x;
LL y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
LL d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(LL n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
LL p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
} LL n; int main(){
// freopen("in.txt","r",stdin);
srand(time(NULL));
int i,j;
LL a,b;
while(~scanf("%I64d",&n))
{
if(n==){
printf("is not a D_num\n");
continue;
}
tol=;
findfac(n);
if(tol!= && tol!=){
printf("is not a D_num\n");
continue;
}
sort(factor,factor+tol);
if(tol== && factor[]!=factor[]){
printf("%I64d %I64d %I64d\n",factor[],factor[],n);
}
else if(tol== && factor[]==factor[] && factor[]==factor[]){
printf("%I64d %I64d %I64d\n",factor[],factor[]*factor[],n);
}
else printf("is not a D_num\n");
}
return ;
}
HDU-3864 D_num Miller_Rabin和Pollard_rho的更多相关文章
- hdu 3864 D_num Pollard_rho算法和Miller_Rabin算法
D_num Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem De ...
- HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...
- hdu 3864 D_num
思路:给一个数n,是否只有4个约数(包括1),也就是找3个大于1的约数. 而任何一个数都可由质数表示,所以对于给定的数,只需要进行质因数分解.这里有 2种情况:如果有3个一样的质因数,则满足条件:否则 ...
- hdu 3864 素数分解
题意:求n是否只有4个因子,如果是就输出除1外的所有因子. 模板题,就不排版了 #include<cstdio> #include<iostream> #include< ...
- Miller_Rabin、 Pollard_rho Template
Multiply and pow Function: //计算 (a*b)%c. a,b都是ll的数,直接相乘可能溢出的 // a,b,c <2^63 ll mult_modq(ll a,ll ...
- Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test
POJ 1811 Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 32534 Accepted: 8 ...
- bzo4802 欧拉函数 miller_rabin pollard_rho
欧拉函数 Time Limit: 5 Sec Memory Limit: 256 MBSubmit: 1112 Solved: 418[Submit][Status][Discuss] Descr ...
- pollard_rho 学习总结 Miller_Rabbin 复习总结
吐槽一下名字,泼辣的肉..OwO 我们知道分解出一个整数的所有质因子是O(sqrt(n)/ln(n))的 但是当n=10^18的时候就显得非常无力的 这个算法可以在大概O(n^(1/4))的时间复杂度 ...
- POJ 2429
思路:a/n*b/n=lcm/gcd 所以这道题就是分解ans.dfs枚举每种素数情况.套Miller_Rabin和pollard_rho模板 //#pragma comment(linker, &q ...
随机推荐
- C++:运算符重载函数
5.运算符重载 5.1 在类外定义的运算符重载函数 C++为运算符重载提供了一种方法,即在运行运算符重载时,必须定义一个运算符重载函数,其名字为operator,后随一个要重载的运算符.例如,要重载& ...
- C++:虚基类
4.4.3 虚基类1.没什么要引入虚基类 如果一个类有多个直接基类,而这些直接基类又有一个共同的基类,则在最底层的派生类中会保留这个间接的共同基类数据成员的多分同名成员.在访问这些同名的成员时,必须在 ...
- CardView官方教程
Create Cards CardView extends the FrameLayout class and lets you show information inside cards that ...
- BZOJ 3142 数列(组合)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3142 题意:给出n,K,m,p.求有多少长度为K的序列A,满足:(1)首项为正整数:(2 ...
- uva 10453 - Make Palindrome(dp, 记录路径)
题目 题意: 给一个字符串 ,判断最少插入多少个字符 使字符串成为回文串, 并输出回文串. 思路:先用dp判断需要个数, 再递归输出路径. #include <iostream> #inc ...
- 3D开发--CopperCube
CopperCube的常用接口,以及如何用javascript语言控制场景中的人物动作,或者获取任务的位置等信息
- uva1638Pole Arrangement
递推. 用f[n][l][r]表示n个柱子,从左面能看到l个,从右面能看到r个. 如果我们按照从小到大的顺序放置的话,放置最高的柱子后,大量状态都能递推到当前状态,很难写出递推式. 但是我们如果从小到 ...
- ASP.NET MVC 学习8、Controller中的Detail和Delete方法
参考:http://www.asp.net/mvc/tutorials/mvc-4/getting-started-with-aspnet-mvc4/examining-the-details-and ...
- [转] Asp.net Report Viewer 简单实例
原文链接:http://www.aspsnippets.com/Green/Articles/ASPNet-Report-Viewer-control-Tutorial-with-example.as ...
- Ubuntu解决Sublime Text 2安装GBK Encoding Support插件仍然乱码
Ubuntu 12.04 32位下,为Sublime Text 2安装Package Control: 1. 用Ctrl+~打开控制台,输入 import urllib2,os; pf='Packag ...