先搞定AES算法,基本变换包含SubBytes(字节替代)、ShiftRows(行移位)、MixColumns(列混淆)、AddRoundKey(轮密钥加)

其算法一般描写叙述为

明文及密钥的组织排列方式

ByteSubstitution(字节替代)

非线性的字节替代,单独处理每一个字节:

求该字节在有限域GF(28)上的乘法逆,"0"被映射为自身,即对于α∈GF(28),求β∈GF(28),

使得α·β=β·α=1mod(x8+x4+x2+x+1)。

对上一步求得的乘法逆作仿射变换

yi=xi +
x(i+4)mod8 + x(i+6)mod8 +
x(i+7)mod8 + ci

(当中ci是6310即011000112的第i位),用矩阵表示为

本来打算把求乘法逆和仿射变换算法敲上去,最后还是放弃了...直接打置换表

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
unsigned
char

sBox[] =
{
/* 
0    1    2    3    4    5    6    7    8    9    a    b    c    d    e    f */
    0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
/*0*/ 
    0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
/*1*/
    0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
/*2*/
    0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
/*3*/
    0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
/*4*/
    0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
/*5*/
    0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
/*6*/ 
    0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
/*7*/
    0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
/*8*/
    0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
/*9*/
    0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
/*a*/
    0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
/*b*/
    0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
/*c*/
    0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
/*d*/
    0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
/*e*/
    0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 
/*f*/
};

以下是逆置换表,解密时使用

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
unsigned
char

invsBox[256] =
{
/* 
0    1    2    3    4    5    6    7    8    9    a    b    c    d    e    f  */
 
    0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38,0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb,
/*0*/
    0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87,0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb,
/*1*/
    0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d,0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e,
/*2*/
    0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2,0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25,
/*3*/
    0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16,0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92,
/*4*/
    0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda,0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84,
/*5*/
    0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a,0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06,
/*6*/
    0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02,0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b,
/*7*/
    0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea,0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73,
/*8*/
    0x96,0xac,0x74,0x22,0xe7,0xad,0x35,0x85,0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e,
/*9*/
    0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89,0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b,
/*a*/
    0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20,0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4,
/*b*/
    0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31,0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f,
/*c*/
    0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d,0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef,
/*d*/
    0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0,0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61,
/*e*/
    0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26,0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d 
/*f*/
};

这里遇到问题了,本来用纯c初始化数组非常正常,封装成类以后发现不能初始化,无论是声明、构造函数都无法初始化,百歌谷度了一通后没有不论什么答案,无奈仅仅能在构造函数中声明一个局部变量数组并初始化,然后用memcpy,(成员变量名为Sbox/InvSbox,局部变量名sBox/invsBox)

?
1
2
3
4
5
6
7
8
9
10
11
void

AES::SubBytes(unsigned
char

state[][4])
{
    int

r,c;
    for(r=0;
r<4; r++)
    {
        for(c=0;
c<4; c++)
        {
            state[r][c]
= Sbox[state[r][c]];
        }
    }
}

ShiftRows(行移位变换)

行移位变换完毕基于行的循环位移操作,变换方法:

即行移位变换作用于行上,第0行不变,第1行循环左移1个字节,第2行循环左移2个字节,第3行循环左移3个字节。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
void

AES::ShiftRows(unsigned
char

state[][4])
{
    unsigned
char

t[4];
    int

r,c;
    for(r=1;
r<4; r++)
    {
        for(c=0;
c<4; c++)
        {
            t[c]
= state[r][(c+r)%4];
        }
        for(c=0;
c<4; c++)
        {
            state[r][c]
= t[c];
        }
    }
}

MixColumns(列混淆变换)

逐列混合,方法:

b(x) = (03·x3 +
01·x2 + 01·x + 02) · a(x) mod(x4 +
1)

矩阵表示形式:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
void

AES::MixColumns(unsigned
char

state[][4])
{
    unsigned
char

t[4];
    int

r,c;
    for(c=0;
c< 4; c++)
    {
        for(r=0;
r<4; r++)
        {
            t[r]
= state[r][c];
        }
        for(r=0;
r<4; r++)
        {
            state[r][c]
= FFmul(0x02, t[r])
                        ^
FFmul(0x03, t[(r+1)%4])
                        ^
FFmul(0x01, t[(r+2)%4])
                        ^
FFmul(0x01, t[(r+3)%4]);
        }
    }
}
 
unsigned
char

AES::FFmul(unsigned
char

a, unsigned
char

b)
{
    unsigned
char

bw[4];
    unsigned
char

res=0;
    int

i;
    bw[0]
= b;
    for(i=1;
i<4; i++)
    {
        bw[i]
= bw[i-1]<<1;
        if(bw[i-1]&0x80)
        {
            bw[i]^=0x1b;
        }
    }
    for(i=0;
i<4; i++)
    {
        if((a>>i)&0x01)
        {
            res
^= bw[i];
        }
    }
    return

res;
}

当中FFmul为有限域GF(28)上的乘法,标准算法应该是循环8次(b与a的每一位相乘,结果相加),但这里仅仅用到最低2位,解密时用到的逆列混淆也仅仅用了低4位,所以在这里高4位的运算是多余的,仅仅计算低4位。

AddRoundKey(轮密钥加变换)

简单来说就是逐字节相加,有限域GF(28)上的加法是模2加法,即异或

?
1
2
3
4
5
6
7
8
9
10
11
void

AES::AddRoundKey(unsigned
char

state[][4], unsigned
char

k[][4])
{
    int

r,c;
    for(c=0;
c<4; c++)
    {
        for(r=0;
r<4; r++)
        {
            state[r][c]
^= k[r][c];
        }
    }
}

KeyExpansion(密钥扩展)

将输入的密钥扩展为11组128位密钥组,当中第0组为输入密钥本身

其后第n组第i列
为 第n-1组第i列 与 第n组第i-1列之和(模2加法,1<= i <=3)

对于每一组 第一列即i=0,有特殊的处理

将前一列即第n-1组第3列的4个字节循环左移1个字节,

并对每一个字节进行字节替代变换SubBytes

将第一行(即第一个字节)与轮常量rc[n]相加

最后再与前一组该列相加

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
void

AES::KeyExpansion(unsigned
char*
key, unsigned
char

w[][4][4])
{
    int

i,j,r,c;
    unsigned
char

rc[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};
    for(r=0;
r<4; r++)
    {
        for(c=0;
c<4; c++)
        {
            w[0][r][c]
= key[r+c*4];
        }
    }
    for(i=1;
i<=10; i++)
    {
        for(j=0;
j<4; j++)
        {
            unsigned
char

t[4];
            for(r=0;
r<4; r++)
            {
                t[r]
= j ? w[i][r][j-1] : w[i-1][r][3];
            }
            if(j
== 0)
            {
                unsigned
char

temp = t[0];
                for(r=0;
r<3; r++)
                {
                    t[r]
= Sbox[t[(r+1)%4]];
                }
                t[3]
= Sbox[temp];
                t[0]
^= rc[i-1];
            }
            for(r=0;
r<4; r++)
            {
                w[i][r][j]
= w[i-1][r][j] ^ t[r];
            }
        }
    }
}

解密的基本运算

AES解密算法与加密不同,基本运算中除了AddRoundKey(轮密钥加)不变外,其余的都须要进行逆变换,即

InvSubBytes(逆字节替代)、InvShiftRows(逆行移位)、InvMixColumns(逆列混淆)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
void

AES::InvSubBytes(unsigned
char

state[][4])
{
    int

r,c;
    for(r=0;
r<4; r++)
    {
        for(c=0;
c<4; c++)
        {
            state[r][c]
= InvSbox[state[r][c]];
        }
    }
}
 
void

AES::InvShiftRows(unsigned
char

state[][4])
{
    unsigned
char

t[4];
    int

r,c;
    for(r=1;
r<4; r++)
    {
        for(c=0;
c<4; c++)
        {
            t[c]
= state[r][(c-r+4)%4];
        }
        for(c=0;
c<4; c++)
        {
            state[r][c]
= t[c];
        }
    }
}
 
void

AES::InvMixColumns(unsigned
char

state[][4])
{
    unsigned
char

t[4];
    int

r,c;
    for(c=0;
c< 4; c++)
    {
        for(r=0;
r<4; r++)
        {
            t[r]
= state[r][c];
        }
        for(r=0;
r<4; r++)
        {
            state[r][c]
= FFmul(0x0e, t[r])
                        ^
FFmul(0x0b, t[(r+1)%4])
                        ^
FFmul(0x0d, t[(r+2)%4])
                        ^
FFmul(0x09, t[(r+3)%4]);
        }
    }
}

加密过程

先将输入的明文按列序组合成4*4的矩阵,直接与第0组密钥(即输入的密钥)相加(异或),作为轮加密的输入

然后循环10次进行SubBytes、ShiftRows、MixColumns、AddRoundKey运算,最后恢复原序列

须要注意的是最后一轮并不进行MixColumns(列混淆变换)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
unsigned
char*
AES::Cipher(unsigned
char*
input)
{
    unsigned
char

state[4][4];
    int

i,r,c;
 
    for(r=0;
r<4; r++)
    {
        for(c=0;
c<4 ;c++)
        {
            state[r][c]
= input[c*4+r];
        }
    }
 
    AddRoundKey(state,w[0]);
 
    for(i=1;
i<=10; i++)
    {
        SubBytes(state);
        ShiftRows(state);
        if(i!=10)MixColumns(state);
        AddRoundKey(state,w[i]);
    }
 
    for(r=0;
r<4; r++)
    {
        for(c=0;
c<4 ;c++)
        {
            input[c*4+r]
= state[r][c];
        }
    }
 
    return

input;
}

解密过程

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
unsigned
char*
AES::InvCipher(unsigned
char*
input)
{
    unsigned
char

state[4][4];
    int

i,r,c;
 
    for(r=0;
r<4; r++)
    {
        for(c=0;
c<4 ;c++)
        {
            state[r][c]
= input[c*4+r];
        }
    }
 
    AddRoundKey(state,
w[10]);
    for(i=9;
i>=0; i--)
    {
        InvShiftRows(state);
        InvSubBytes(state);
        AddRoundKey(state,
w[i]);
        if(i)InvMixColumns(state);
    }
     
    for(r=0;
r<4; r++)
    {
        for(c=0;
c<4 ;c++)
        {
            input[c*4+r]
= state[r][c];
        }
    }
 
    return

input;
}

对外部数据的加密/解密

至此已经实现了AES加密与解密的原型,在使用的时候一般处理的是字符串等,而不是直接传入128位的数据,所以要封装一下对外部数据的加解密处理

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
void*
AES::Cipher(
void*
input,
int

length)
{
    unsigned
char*
in = (unsigned
char*)
input;
    int

i;
    if(!length)
    {
        while(*(in+length++));
        in
= (unsigned
char*)
input;
    }
    for(i=0;
i<length; i+=16)
    {
        Cipher(in+i);
    }
    return

input;
}
 
void*
AES::InvCipher(
void*
input,
int

length)
{
    unsigned
char*
in = (unsigned
char*)
input;
    int

i;
    for(i=0;
i<length; i+=16)
    {
        InvCipher(in+i);
    }
    return

input;
}

AES加密算法(C++实现,附源代码)的更多相关文章

  1. AES加密算法(C++实现,附源码)

    原创作品,转载请注明出自xelz's blog 博客地址:http://mingcn.cnblogs.com/ 本文地址:http://mingcn.cnblogs.com/archive/2010/ ...

  2. Qt使用AES加密算法对字符串进行加密

          因工作需要,需要对字符串进行加密处理,在网上找了很长时间,终于找到了一个可以使用的aes加密算法.其源代码采用c++编写而成,但其头文件引用windows.h,经过修改部分代码,将#inc ...

  3. 效率最高的Excel数据导入---(c#调用SSIS Package将数据库数据导入到Excel文件中【附源代码下载】) 转

    效率最高的Excel数据导入---(c#调用SSIS Package将数据库数据导入到Excel文件中[附源代码下载])    本文目录: (一)背景 (二)数据库数据导入到Excel的方法比较   ...

  4. AES加密算法C++实现

    我从网上下载了一套AES加密算法的C++实现,代码如下: (1)aes.h #ifndef SRC_UTILS_AES_H #define SRC_UTILS_AES_H class AES { pu ...

  5. PHP android ios相互兼容的AES加密算法

    APP项目用户密码传输一直没有用HTTPS,考虑到用户的隐私暂时先用AES对密码加密,以后也可以用于手机端与服务端加密交互. PHP的免费版phpAES项目,手机端解码各种不对. 好不容易找了PHP ...

  6. 【转】P2P之UDP穿透NAT的原理与实现(附源代码)

    作者:shootingstars (有容乃大,无欲则刚)  日期:2004-5-25 出处:P2P中国(PPcn.net) P2P 之 UDP穿透NAT的原理与实现(附源代码)原创:shootings ...

  7. 仿36氪(iOS版附源代码)

    前言: 这是我2016年3月开始写的,利用课余时间全心投入的项目,本以为是凭着轻松愉悦的方式来学习的,中途遇到bug解决bug的时候,每天晚上几乎都是写到寝室关灯,还有一次使用Github不当写了五天 ...

  8. Android AES加密算法及事实上现

    昨天老大叫我看看android加密算法.于是网上找了找,找到了AES加密算法.(当然还有MD5,BASE64什么的http://snowolf.iteye.com/blog/379860这篇文章列举了 ...

  9. WCF技术剖析之二十八:自己动手获取元数据[附源代码下载]

    原文:WCF技术剖析之二十八:自己动手获取元数据[附源代码下载] 元数据的发布方式决定了元数据的获取行为,WCF服务元数据架构体系通过ServiceMetadataBehavior实现了基于WS-ME ...

随机推荐

  1. 一步一步ITextSharp 低级操作函数使用

    首先说一下PDF文档的结构: 分为四层,第一层和第四层由低级操作来进行操作,第二层.第三层由高级对象操作 第一层操作只能使用PdfWriter.DirectContent操作,第四层使用DirectC ...

  2. SQLlite(WebSQL)如何排序并分页查询(SQLlite语法)

    SELECT * FROM Table ORDER BY ID DESC Limit 10,9 limit语义:跳过10行,取9行 参考: SQLite的limit用法   如果我要去11-20的Ac ...

  3. Delphi的windows剪切板操作函数

    1. Clipbrd函数 function Clipboard: TClipboard;:若应用程序从未使用过剪贴板,则调用该函数形成新的剪贴板:若之前使用过剪贴板则返回使用过的剪贴板. 属性: As ...

  4. Multiple View Geometry in Computer Vision Second Edition by Richard Hartley 读书笔记(一)

    var bdots = "../" var sequence = [ 'l1', 'l2', 'l3', 'l4' ]; Chapter1是个总览,引出了射影几何的概念,通过在欧式 ...

  5. Front-End-Develop-Guide

    这份文件包含一系列用于面试审查求职者(候选人)的前端面试问题.这并不推荐把每个问题都问在同一个求职者(因为这会花几个小时的时间).从列表中抽取一些问题能够帮助你审查你需要求职者具备的一些技能. 注: ...

  6. Flume OG 与 Flume NG 的区别

    1.Flume OG:Flume original generation 即Flume 0.9.x版本    Flume NG:Flume next generation ,即Flume 1.x版本 ...

  7. sgu 176 Flow construction(有源汇的上下界最小流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11025 [模型] 有源汇点的上下界最小流.即既满足上下界又满足 ...

  8. bfs CCF2016第七次 游戏

    // bfs CCF2016第七次 游戏 // 思路: // O(300*100*100) // 直接暴搜 // 注意,同一格同一时间不能经过两次!!! #include <bits/stdc+ ...

  9. web服务器分析与设计(四)

    上篇已经开始了系统内部的分析,并且得到一些分析对象.在整个动作场景中,我们得到了一些粗略的对象.有必要对对象进行分析,合并,再抽象. 实质是职责的合理分配,使得系统合乎功能性,同时得到最大的可扩展,可 ...

  10. COS回应7大质疑

    Apple过于封闭,没啥朋友,这家伙应该比较高傲,曾和Intel,IBM and so on..一起玩过!Google过于开放,狐朋狗友,友人泛滥,殃及ecosystem,弊端已显,祸水将至.COS奉 ...