折线分割平面

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 19216    Accepted Submission(s):
13205

Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
 
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C
行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。

 
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。

 
Sample Input
2
1
2
 
Sample Output
2
7
 
 
主要是需要找到递推公式
 
以下内容摘自http://www.cnblogs.com/chaosheng/archive/2012/01/26/2329583.html

(1) n条直线最多分平面问题

题目大致如:n条直线,最多可以把平面分为多少个区域。

析:可能你以前就见过这题目,这充其量是一道初中的思考题。但一个类型的题目还是从简单的入手,才容易发现规律。当有n-1条直线时,平面最多被分成了f(n-1)个区域。则第n条直线要是切成的区域数最多,就必须与每条直线相交且不能有同一交点。这样就会得到n-1个交点。这些交点将第n条直线分为2条射线和n-2条线断。而每条射线和线断将以有的区域一分为二。这样就多出了2+(n-2)个区域。

故:f(n)=f(n-1)+n

=f(n-2)+(n-1)+n

……

=f(1)+1+2+……+n

=n(n+1)/2+1

(2) 折线分平面(hdu2050)

根据直线分平面可知,由交点决定了射线和线段的条数,进而决定了新增的区域数。当n-1条折线时,区域数为f(n-1)。为了使增加的区域最多,则折线的两边的线段要和n-1条折线的边,即2*(n-1)条线段相交。那么新增的线段数为4*(n-1),射线数为2。但要注意的是,折线本身相邻的两线段只能增加一个区域。

故:f(n)=f(n-1)+4(n-1)+2-1

=f(n-1)+4(n-1)+1

=f(n-2)+4(n-2)+4(n-1)+2

……

=f(1)+4+4*2+……+4(n-1)+(n-1)

=2n^2-n+1

(3) 封闭曲线分平面问题

题目大致如设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。

析:当n-1个圆时,区域数为f(n-1).那么第n个圆就必须与前n-1个圆相交,则第n个圆被分为2(n-1)段线段,增加了2(n-1)个区域。

故: f(n)=f(n-1)+2(n-1)

=f(1)+2+4+……+2(n-1)

=n^2-n+2

(4)平面分割空间问题(hdu1290)

由二维的分割问题可知,平面分割与线之间的交点有关,即交点决定射线和线段的条数,从而决定新增的区域数。试想在三维中则是否与平面的交线有关呢?当有n-1个平面时,分割的空间数为f(n-1)。要有最多的空间数,则第n个平面需与前n-1个平面相交,且不能有共同的交线。即最多有n-1 条交线。而这n-1条交线把第n个平面最多分割成g(n-1)个区域。(g(n)为(1)中的直线分平面的个数)此平面将原有的空间一分为二,则最多增加g(n-1)个空间。

故:f=f(n-1)+g(n-1)    ps:g(n)=n(n+1)/2+1

=f(n-2)+g(n-2)+g(n-1)

……

=f(1)+g(1)+g(2)+……+g(n-1)

=2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)

=(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1

=(n^3+5n)/6+1

#include<stdio.h>
#include<math.h>
int main()
{
int n,m,sum;
scanf("%d",&n);
while(n--)
{
scanf("%d",&m);
sum=2*pow(m,2)-m+1; //重点在公式
printf("%d\n",sum);
}
return 0;
}

  

hdoj 2050 折线分割平面的更多相关文章

  1. Hdoj 2050.折线分割平面 题解

    Problem Description 我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目.比如,一条折线可以将平面分成两部分,两条折线最多可以将平面 ...

  2. hdu 2050:折线分割平面(水题,递归)

    折线分割平面 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  3. HDU 2050 折线分割平面(转)

    折线分割平面 http://acm.hdu.edu.cn/showproblem.php?pid=2050 Problem Description 我们看到过很多直线分割平面的题目,今天的这个题目稍微 ...

  4. HDU 2050 折线分割平面 (数学)

    题目链接 Problem Description我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目.比如,一条折线可以将平面分成两部分,两条折线最多可 ...

  5. hdu 2050 折线分割平面 (递推)

    折线分割平面 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  6. hdu 2050 折线分割平面(递推公式)

    折线分割平面 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  7. HDU - 2050 - 折线分割平面(数学 + dp)

    题意: 我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目.比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分 思路: 记住结论.. ...

  8. hdu 2050 折线分割平面 dp递推 *

    折线分割平面 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  9. HDU 2050 折线分割平面 (递推)

    题意:略. 析:多写几个就找到规律了,第1条是2,2条时是7个,3条时是16,4条时是29,.... 那么规律就出来了2 * n * n + 1 - n; 也可以递推,第n条折线的两条边都与前n-1条 ...

随机推荐

  1. 前阿里CEO卫哲谈阿里创业经验:如何找人、找钱、找方向?(不同的阶段分别有:时间优先、金额优先、比例优先,不要做平台,太难)

    新浪科技李根 整理报道 卫哲现在是御嘉基金的创始合伙人,他另一个更加知名的身份是阿里巴巴(B2B)前CEO,在2006年到2011年的时间里,卫哲见证了阿里巴巴如何利用人才.资本和方向选择一路壮大. ...

  2. ArcGIS学习记录—属性表的编辑与修改

    原文地址: ArcGIS问题:属性表的编辑与修改 - Silent Dawn的日志 - 网易博客 http://gisman.blog.163.com/blog/static/344933882009 ...

  3. A过的题目

    1.TreeMap和TreeSet类:A - Language of FatMouse ZOJ1109B - For Fans of Statistics URAL 1613 C - Hardwood ...

  4. dom4j 的小小测试

    @Test public void gogo() throws IOException{ InputStream in = this.getClass().getClassLoader() .getR ...

  5. JavaScript window.open()属性

    一. Window 对象 Window 对象是 JavaScript 层级中的顶层对象. Window 对象代表一个浏览器窗口或一个框架. Window 对象会在 <body> 或 < ...

  6. eclipse+pydev (python) 配置出错

    错误: eclipse+pydev 配置出错,就是在选择python interpreter那一步: See error log for details.com.sun.org.apache.xerc ...

  7. JADE提升篇

    以下如果未特殊声明,都在JADE管理器中运行,然后再Eclipse控制台中查看! JADE行为类 在前面的例子中,Agent所作的工作都定义在了setup方法中,实际上它具有的行为和执行的动作都应该定 ...

  8. sublime text2卸载和重新安装

    很多同学使用 sublime text2 的时候,出现一些奇怪的bug,且重启无法修复. 于是,就会想到卸载 sublime text2 再重新安装. 然而,你会发现,重新安装后,这个bug任然存在, ...

  9. po 时不生效时, 不要用点方法

    Dot notation for message sending is not supported in lldb. Use bracket notation and cast the result ...

  10. 【转】adb控台中Permission denied的解决方案

    原文网址:http://blog.csdn.net/wkl305268748/article/details/13504171 [前提]手机一定要root 在控制台中想要将电脑上c盘中的tcpdump ...