本篇讲的是SVM与logistic regression的关系。

(一) SVM算法概论

首先我们从头梳理一下SVM(一般情况下,SVM指的是soft-margin SVM)这个算法。

这个算法要实现的最优化目标是什么?我们知道这个目标必然与error measurement有关。

那么,在SVM中,何如衡量error的?也即:在SVM中ε具体代表着什么?

SVM的目标是最小化上式。我们用来衡量error。这个式子是不是有点眼熟?我们在regularzation一篇中,最小化的目标也是如此形式。但是两者的思路不同:对于regularization,我们的目标是最小化error,但是呢,我们也希望对|w|的长度有限制;

对于SVM,我们的目标是最小化|w|,但是呢,我们也希望对error有所限制。

具体哪一方面占的权重更大,对于regularization来说,可以用λ来调节;对于SVM来说,可以用C来调节。

总体来说,殊途同归,但是使用SVM方法,即使是如上的nonlinear error衡量方式,我们也可以用QP工具来解决;第二,我们可以使用kernel function工具

具体来说其误差衡量方式与0/1 error相比:

我们发现:这种误差衡量方式也是0/1误差的一种upper bound。之前我们在哪里见识过类似的场景?squared error 和cross-entropy error。

我们可以看到:SVM的错误衡量方式与cross-entropy error的值相似。所以我们说 SVM ≈ L2-regularized logistic regression。

(二)probabilistic SVM

如何融合SVM和logistic regression?

我也不知道为什么要将SVM与logistic regression联系起来。logistic regression与SVM相比,有什么优点?是极大似然?直接使用SVM不好吗?

这两种方法都不好,没有吸收两种方法的好处。

(三)kernel logistic regression

假设我们融合logistic regression与SVM,主要是要在logistic regression中使用SVM的kernel function工具。那么,现在的问题是:能不能直接做kernel logistic regression?

首先明白一点:要想使用kernel trick,必然有:w可以由n个数据来表示。也即:optimal w can be represented by zn

什么使用这一情况会得到满足?

由此,我们可以做kernel logistic regression:

Probabilistic SVM 与 Kernel Logistic Regression(KLR)的更多相关文章

  1. 机器学习技法:05 Kernel Logistic Regression

    Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Clas ...

  2. 机器学习技法笔记:05 Kernel Logistic Regression

    Roadmap Soft-Margin SVM as Regularized Model SVM versus Logistic Regression SVM for Soft Binary Clas ...

  3. 【Kernel Logistic Regression】林轩田机器学习技术

    最近求职真慌,一方面要看机器学习,一方面还刷代码.还是静下心继续看看课程,因为觉得实在讲的太好了.能求啥样搬砖工作就随缘吧. 这节课的核心就在如何把kernel trick到logistic regr ...

  4. SVM: 相对于logistic regression而言SVM的 cost function与hypothesis

    很多学习算法的性能都差不多,关键不是使用哪种学习算法,而是你能得到多少数据量和应用这些学习算法的技巧(如选择什么特征向量,如何选择正则化参数等) SVM在解决非线性问题上提供了强大的方法. logis ...

  5. support vector regression与 kernel ridge regression

    前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel r ...

  6. Logistic Regression vs Decision Trees vs SVM: Part II

    This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees ...

  7. Logistic Regression Vs Decision Trees Vs SVM: Part I

    Classification is one of the major problems that we solve while working on standard business problem ...

  8. logistic regression与SVM

    Logistic模型和SVM都是用于二分类,现在大概说一下两者的区别 ① 寻找最优超平面的方法不同 形象点说,Logistic模型找的那个超平面,是尽量让所有点都远离它,而SVM寻找的那个超平面,是只 ...

  9. More 3D Graphics (rgl) for Classification with Local Logistic Regression and Kernel Density Estimates (from The Elements of Statistical Learning)(转)

    This post builds on a previous post, but can be read and understood independently. As part of my cou ...

随机推荐

  1. sql的内连接 左外连接 右外连接 全外连接等连接查询的关系图

    经常会用到的,下面用图来表示各个连接

  2. Quartz的misfire特性

    Quartz的misfire特性 只有一个线程.多个job 第一个job产生misfire(executeTime>Interval) 且是repeatForever 那么只会运行第一个job, ...

  3. sql 随笔 2015-07-02

    sql 自定义函数 --检查函数是否存在 if exists (select * from dbo.sysobjects where id = object_id(N'dbo.pTitleCase') ...

  4. 车牌识别LPR(六)-- 字符分割

    第六篇:字符分割 在知道了车牌字符的规律之后,可以根据车牌的特点对字符进行分割.一般最容易想到的方法就是根据车牌投影.像素统计特征对车牌图像进行字符分割的方法.是一种最常用的.最基本的.最简单的车牌字 ...

  5. c创建win窗口

    windows程序设计示例: #include "windows.h" #pragma comment(lib, "winmm") LRESULT CALLBA ...

  6. 分享一个免费SSL证书申请网站,给网站开启https协议 | 张戈博客

    这些天,由于公司的业务需求,接触到了ssl证书和https协议.博客前几篇文章也分享了在WEB服务器上安装SSL证书,为网站开启https协议的教程,感兴趣的童鞋可以前往查看相关文章: <Lin ...

  7. C++中关于指针初始化和使用NULL的理解

    1.严禁使用未被初始化的指针:C++创建指针的时候,只分配存储地址的内存,并不会分配存储数据的内存,所以指针可能指向任何位置. (1)使用解除运算符(*)之前,一定要对指针初始化,否则若声明的指针刚好 ...

  8. js实现ppt

    实现ppt的js框架有很多,这里推荐几个: impress.js      impress.js demo webSlide.js    webSlide.js demo reveal.js      ...

  9. Android中LayoutInflater的使用

    Inflater英文意思是膨胀,在Android中应该是扩展的意思吧. LayoutInflater 的作用类似于 findViewById(),不同点是LayoutInflater是用来找layou ...

  10. Jqgrid入门-结合Struts2+json实现数据展示(五)

    DEMO用的是ssh框架实现的,具体怎么搭建的就不多做说明了.分页表格的数据操作难点就是数据展现.至于增删改直接用hibernate原生的方法实现即可.         初步分析:表格要实现分页,那么 ...