题意:披萨店给n个地方送披萨,已知各地方(包括披萨店)之间花费的时间,求送完所有地方并回到店花费的最小时间

分析:状态好确定dp[i][j],i中1表示地方已送过,否则为0,j为当前状态最后一个送过的地方,注意怎么走才算最小时间,当然是走最短路,点很少由floyd求出各点最短路

求回到店的最小时间,从店出发(状态为1)。

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define read freopen("in.txt", "r", stdin)
const ll INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod = 1000000007;
int d[15][15],a[15][15],n,dp[2500][15];
void solve(){
int c=(1<<(n+1))-1;
for(int k=0;k<=n;++k)
for(int i=0;i<=n;++i)
for(int j=0;j<=n;++j)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
memset(dp,-1,sizeof(dp));
dp[1][0]=0;
for(int i=1;i<=c;++i){
i|=1;
for(int j=0;j<=n;++j){
if(dp[i][j]==-1)continue;
for(int k=0;k<=n;++k)
if(dp[i|(1<<k)][k]==-1&&j!=k||dp[i|(1<<k)][k]>dp[i][j]+d[j][k])
dp[i|(1<<k)][k]=dp[i][j]+d[j][k];
}
}
printf("%d\n",dp[c][0]);
}
int main()
{
while(~scanf("%d",&n)){
if(n==0)break;
for(int i=0;i<=n;++i)
for(int j=0;j<=n;++j)
scanf("%d",&d[i][j]);
solve();
}
return 0;
}

  

Hie with the Pie(POJ 3311状压dp)的更多相关文章

  1. POJ 3311 Hie with the Pie 最短路+状压DP

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11243   Accepted: 5963 ...

  2. poj 3311 状压dp 最短路

    C - Hie with the Pie Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64 ...

  3. poj 3311 状压DP

    经典TSP变形 学到:1.floyd  O(n^3)处理随意两点的最短路 2.集合的位表示,我会在最后的总结出写出.注意写代码之前一定设计好位的状态.本题中,第0位到第n位分别代表第i个城市,1是已经 ...

  4. Hie with the Pie POJ - 3311

    Hie with the Pie POJ - 3311 The Pizazz Pizzeria prides itself in delivering pizzas to its customers ...

  5. 状压dp+floyed(C - Hie with the Pie POJ - 3311 )

    题目链接:https://cn.vjudge.net/contest/276236#problem/C 题目大意: 给你一个有n+1(1<=n<=10)个点的有向完全图,用矩阵的形式给出任 ...

  6. POJ 3254 (状压DP) Corn Fields

    基础的状压DP,因为是将状态压缩到一个整数中,所以会涉及到很多比较巧妙的位运算. 我们可以先把输入中每行的01压缩成一个整数. 判断一个状态是否有相邻1: 如果 x & (x << ...

  7. poj 1170状压dp

    题目链接:https://vjudge.net/problem/POJ-1170 题意:输入n,表示有那种物品,接下来n行,每行a,b,c三个变量,a表示物品种类,b是物品数量,c代表物品的单价.接下 ...

  8. Hie with the Pie (POJ 3311) 旅行商问题

    昨天想练习一下状态压缩,百度搜索看到有博客讨论POJ 3311,一看就是简单的旅行商问题,于是快速上手写了状态压缩,死活样例都没过... 画图模拟一遍原来多个城市可以重复走,然后就放弃思考了... 刚 ...

  9. POJ 3254 状压DP

    题目大意: 一个农民有一片n行m列 的农场   n和m 范围[1,12]  对于每一块土地 ,1代表可以种地,0代表不能种. 因为农夫要种草喂牛,牛吃草不能挨着,所以农夫种菜的每一块都不能有公共边. ...

随机推荐

  1. YUM详解

    用YUM升级软件打开终端,切换到root用户,yum的操作大都须有超级用户的权限.首 先,yum update,这一步是必须的,yum会从服务器的header目录下载rpm的header,放在本地的缓 ...

  2. Oracle安装后,服务中没有监听器怎么处理?

    运行中输入netca 回车运行oracle net configuration assistant, 选择监听程序配置->下一步->接下来的步骤可以都选默认一直下一步到最后,即可.

  3. 【mysql的设计与优化专题(6)】mysql索引攻略

    所谓索引就是为特定的mysql字段进行一些特定的算法排序,比如二叉树的算法和哈希算法,哈希算法是通过建立特征值,然后根据特征值来快速查找,而用的最多,并且是mysql默认的就是二叉树算法 BTREE, ...

  4. SULogger:iOS日志可视化工具

    前言 debug对于咋们程序员来说家常便饭,但有时候我们会遇到一种情况:开发某个功能时,需要在某个特定场景下进行调试,而这个场景并没有MacBook来进行连接debug,偏偏我们需要获得调试时的一些信 ...

  5. QT进度条QProgressBar的练习(定制QProgressBar,单独成为一个控件)

    progressbar.h #ifndef PROGRESSBAR_H #define PROGRESSBAR_H #include <QProgressBar> class QStrin ...

  6. Java入门到精通——基础篇之多线程实现简单的PV操作的进程同步

    Java入门到精通——基础篇之多线程实现简单的PV操作的进程同步 一.概述     PV操作是对信号量进行的操作.     进程同步是指在并发进程之间存在一种制约关系,一个进程的执行依赖另一个进程的消 ...

  7. Android Handler消息传递

    一.背景 出于性能优化考虑,Android的UI操作并不是线程安全的,这意味着如果有多个线程并发操作UI组件,可能导致线程安全问题.为了解决这个问题,Android制定了一条简单的原则:只允许UI线程 ...

  8. 8、双向一对多的关联关系(等同于双向多对一。1的一方有对n的一方的集合的引用,同时n的一方有对1的一方的引用)

    双向一对多关联关系 “双向一对多关联关系”等同于“双向多对一关联关系”:1的一方有对n的一方的集合的引用,同时n的一方有对1的一方的引用. 还是用客户Customer和订单Order来解释: “一对多 ...

  9. get Status canceled 请求被取消

    1.chrome浏览器下状况: 2.环境: 一个页面A下 包含一个 iframe ,在子页面中用js点击A页面下的链接替换iframe内容脚本如下: window.parent.document.ge ...

  10. 简单的SocketExample

    客户端//---------------VerySimpleClient.java package SocketExample; // Tue Nov 2 18:34:53 EST 2004 // / ...