If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa convergent power series. This is called the Neumann series.

Solution.  Since $\sen{A}<1$, $$\bex \sum_{n=0}^\infty \sen{A}^n=\frac{1}{1-\sen{A}}<\infty. \eex$$ Due to the completeness of the matrix space, $\dps{\sum_{n=0}^\infty A_n}$ converges. Since $$\bex (I-A)(I+\cdots+A^{n-1})=I-A^n, \eex$$ we may take limit to get $$\bex (I-A)\cdot \sum_{n=0}^\infty A^n=I. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

随机推荐

  1. ASP.NET MVC的约定

    ASP.NET MVC 应用程序遵循以下3条约定: 所有的控制器的名称都以Controller结尾,如HomeController, AccountController 这些类默认在Controlle ...

  2. owa Your request can't be completed right now. Please try again later.

    Your request can't be completed right now. Please try again later.

  3. ExtJs gridPanel Column 时间格式化

    var panel = new Ext.container.Viewport({ items: { xtype: 'gridpanel', id: 'gridPanel', store: store, ...

  4. XML工具类 - XmlUtils.java

    XML工具类,提供序列化XML.反序列化XML.获取指定节点的值的方法. 源码如下:(点击下载 - XmlUtils.java.dom4j-1.6.1.jar.xstream-1.4.7.jar ) ...

  5. 过长文字自动换行的技巧 Word-Break Word-Wrap

    在很多时候,为了防止内容过长把表格或容器撑破, 我们都需要为容器加上自动换行的功能. 实现自动换行,用CSS来实现,通常有两种方式: word-break: 取值为 normal, break-all ...

  6. c++ 异常处理 assert | try

    #include <iostream> #include <cassert> using namespace std; int main() { ; assert(i == ) ...

  7. [转载]在網頁上加入HTML5 的Video Tag,直接播放MP4、OGG…等

    在之前有一篇文章提到HTML5(為何iPhone,iPod,iPad不支援Flash,HTML5將更普及於網路世界!!)的重要性,而Html 5的主要革新是在他的語意標籤,像是<video> ...

  8. Untiy 接入 移动MM 详解

    原地址:http://www.cnblogs.com/alongu3d/p/3627936.html Untiy 接入 移动MM 详解 第一次接到师傅的任务(小龙),准备着手写untiy接入第三方SD ...

  9. java基本对象Integer,String比较相等及equal案例说明

    Integer i = new Integer(100); Integer i2 = new Integer(100); if(i == i2){ System.out.println("A ...

  10. 不定长内存池之apr_pool

    内存池可有效降低动态申请内存的次数,减少与内核态的交互,提升系统性能,减少内存碎片,增加内存空间使用率,避免内存泄漏的可能性,这么多的优点,没有理由不在系统中使用该技术. 内存池分类: 1.      ...