[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa convergent power series. This is called the Neumann series.
Solution. Since $\sen{A}<1$, $$\bex \sum_{n=0}^\infty \sen{A}^n=\frac{1}{1-\sen{A}}<\infty. \eex$$ Due to the completeness of the matrix space, $\dps{\sum_{n=0}^\infty A_n}$ converges. Since $$\bex (I-A)(I+\cdots+A^{n-1})=I-A^n, \eex$$ we may take limit to get $$\bex (I-A)\cdot \sum_{n=0}^\infty A^n=I. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
随机推荐
- ASP.NET MVC的约定
ASP.NET MVC 应用程序遵循以下3条约定: 所有的控制器的名称都以Controller结尾,如HomeController, AccountController 这些类默认在Controlle ...
- owa Your request can't be completed right now. Please try again later.
Your request can't be completed right now. Please try again later.
- ExtJs gridPanel Column 时间格式化
var panel = new Ext.container.Viewport({ items: { xtype: 'gridpanel', id: 'gridPanel', store: store, ...
- XML工具类 - XmlUtils.java
XML工具类,提供序列化XML.反序列化XML.获取指定节点的值的方法. 源码如下:(点击下载 - XmlUtils.java.dom4j-1.6.1.jar.xstream-1.4.7.jar ) ...
- 过长文字自动换行的技巧 Word-Break Word-Wrap
在很多时候,为了防止内容过长把表格或容器撑破, 我们都需要为容器加上自动换行的功能. 实现自动换行,用CSS来实现,通常有两种方式: word-break: 取值为 normal, break-all ...
- c++ 异常处理 assert | try
#include <iostream> #include <cassert> using namespace std; int main() { ; assert(i == ) ...
- [转载]在網頁上加入HTML5 的Video Tag,直接播放MP4、OGG…等
在之前有一篇文章提到HTML5(為何iPhone,iPod,iPad不支援Flash,HTML5將更普及於網路世界!!)的重要性,而Html 5的主要革新是在他的語意標籤,像是<video> ...
- Untiy 接入 移动MM 详解
原地址:http://www.cnblogs.com/alongu3d/p/3627936.html Untiy 接入 移动MM 详解 第一次接到师傅的任务(小龙),准备着手写untiy接入第三方SD ...
- java基本对象Integer,String比较相等及equal案例说明
Integer i = new Integer(100); Integer i2 = new Integer(100); if(i == i2){ System.out.println("A ...
- 不定长内存池之apr_pool
内存池可有效降低动态申请内存的次数,减少与内核态的交互,提升系统性能,减少内存碎片,增加内存空间使用率,避免内存泄漏的可能性,这么多的优点,没有理由不在系统中使用该技术. 内存池分类: 1. ...