[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa convergent power series. This is called the Neumann series.
Solution. Since $\sen{A}<1$, $$\bex \sum_{n=0}^\infty \sen{A}^n=\frac{1}{1-\sen{A}}<\infty. \eex$$ Due to the completeness of the matrix space, $\dps{\sum_{n=0}^\infty A_n}$ converges. Since $$\bex (I-A)(I+\cdots+A^{n-1})=I-A^n, \eex$$ we may take limit to get $$\bex (I-A)\cdot \sum_{n=0}^\infty A^n=I. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
随机推荐
- 一步步学习NHibernate(9)——连接查询和子查询(1)
请注明转载地址:http://www.cnblogs.com/arhat 在前几章中,我们把HQL的基本查询学习了一下,但是只有基本查询很显然不能满足我们的需求,那么就需要一下复杂查询比如" ...
- 【BZOJ 1497】 [NOI2006]最大获利
Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一 ...
- Understanding Responsive Web Design: Cross-browser Compatibility
http://www.sitepoint.com/understanding-responsive-web-design-cross-browser-compatibility/ In the las ...
- Guide to Database Migration from Microsoft SQL Server using MySQL Workbench
http://mysqlworkbench.org/2012/07/migrating-from-ms-sql-server-to-mysql-using-workbench-migration-wi ...
- linux tail
tail 命令从指定点开始将文件写到标准输出,使用tail命令的-f选项可以方便的查阅正在改变的日志文件,tail -f filename会把filename里最尾部的内容显示在屏幕上,并且不但刷新, ...
- ajax 获取 mysql 保存的图片显示
function ajax_GetFirstData(data) { var len = data.Data.length; if (len > 0) { $("#jquery_jpl ...
- 根据不同ip进入不同页面
function GetIP() { $cip = ""; if(!empty($_SERVER["HTTP_CLIENT_IP"])){ $cip = $_S ...
- linux服务器初步印象,远程连接mysql数据库,传输文件,启动/关闭tomcat命令
1.连接服务器数据库,以Navicat连接mysql为例 1.1 常规 新建连接,连接名,主机名或ip地址:127.0.0.1 端口:3306用户名:(服务器端)root密码:(服务器端)pwd 1. ...
- ArcGIS Runtime for Android开发教程V2.0(3)基础篇---Hello World Map
原文地址: ArcGIS Runtime for Android开发教程V2.0(3)基础篇---Hello World Map - ArcGIS_Mobile的专栏 - 博客频道 - CSDN.NE ...
- visio2010去除直线交叉处的跨线
设计(最上方)->连接线(最右侧)->显示跨线(取消打钩)