Silver Cow Party

题目链接:

http://acm.hust.edu.cn/vjudge/contest/122685#problem/D

Description


One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input


Line 1: Three space-separated integers, respectively: N, M, and X
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output


Line 1: One integer: the maximum of time any one cow must walk.

Sample Input


4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output


10

Hint


Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.


##题意:

n个人分别住在1~n个点,他们要去某个点聚会并且结束后返回家中.
求每个人的最短路程. (往返路径可以不一样).


##题解:

先用dijkstra求出终点到所有点的最短路径(返程).
再沿着反向路径跑一次dijkstra,求出所有点到终点的最短路径.


##代码:
``` cpp
#include
#include
#include
#include
#include
#define mid(a,b) ((a+b)>>1)
#define LL long long
#define maxn 1010
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;

int n,m;

int value[maxn][maxn];

int dis[maxn];

bool vis[maxn];

int dis2[maxn];

void dijkstra(int s) {

memset(vis, 0, sizeof(vis));

for(int i=1; i<=n; i++) dis[i] = inf;

dis[s] = 0;

for(int i=1; i<=n; i++) {
int p, mindis = inf;
for(int j=1; j<=n; j++) {
if(!vis[j] && dis[j]<mindis)
mindis = dis[p=j];
}
vis[p] = 1;
for(int j=1; j<=n; j++) {
if(dis[j] > dis[p]+value[p][j]) {
dis[j] = dis[p] + value[p][j];
}
}
}

}

void dijkstra2(int s) {

memset(vis, 0, sizeof(vis));

for(int i=1; i<=n; i++) dis2[i] = inf;

dis2[s] = 0;

for(int i=1; i<=n; i++) {
int p, mindis = inf;
for(int j=1; j<=n; j++) {
if(!vis[j] && dis2[j]<mindis)
mindis = dis2[p=j];
}
vis[p] = 1;
for(int j=1; j<=n; j++) {
if(dis2[j] > dis2[p]+value[j][p]) {
dis2[j] = dis2[p] + value[j][p];
}
}
}

}

int main(int argc, char const *argv[])

{

//IN;

int aim;
while(scanf("%d %d %d", &n,&m,&aim) != EOF)
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
value[i][j] = inf;
while(m--){
int u,v,w; cin>>u>>v>>w;
if(w < value[u][v]) value[u][v] = w;
} dijkstra(aim);
dijkstra2(aim); int ans = 0;
for(int i=1; i<=n; i++) if(dis[i]!=inf && dis2[i]!=inf)
ans = max(ans, dis[i]+dis2[i]); printf("%d\n", ans);
} return 0;

}

POJ 3268 Silver Cow Party (最短路dijkstra)的更多相关文章

  1. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  2. poj 3268 Silver Cow Party(最短路dijkstra)

    描述: One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the bi ...

  3. POJ 3268 Silver Cow Party (双向dijkstra)

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  4. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  5. poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13611   Accepted: 6138 ...

  6. POJ 3268 Silver Cow Party (最短路径)

    POJ 3268 Silver Cow Party (最短路径) Description One cow from each of N farms (1 ≤ N ≤ 1000) convenientl ...

  7. POJ 3268——Silver Cow Party——————【最短路、Dijkstra、反向建图】

    Silver Cow Party Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Su ...

  8. DIjkstra(反向边) POJ 3268 Silver Cow Party || POJ 1511 Invitation Cards

    题目传送门 1 2 题意:有向图,所有点先走到x点,在从x点返回,问其中最大的某点最短路程 分析:对图正反都跑一次最短路,开两个数组记录x到其余点的距离,这样就能求出来的最短路以及回去的最短路. PO ...

  9. POJ 3268 Silver Cow Party 单向最短路

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22864   Accepted: 1044 ...

随机推荐

  1. 传感器(3)传感器的X,Y,Z轴

    设备正面水平向上. X轴 : 左右方向,向右是正值. Y轴 : 远近方向,远离你是负. Z轴 : 上下方向,向上是正值.

  2. Android相对布局(RelativeLayout)

    Android相对布局(RelativeLayout) 备注:这里的视图和元素是等同的概念. RelativeLayout是一个允许子视图相对于其他兄弟视图或是父视图显示的视图组(通过ID指定).每个 ...

  3. 分批次获取git for windows的源代码

    $ git initInitialized empty Git repository in d:/SourceCode/GitHub/Git For Windows/Git/.git/ $ git r ...

  4. Linux/Centos下清理内存和Cache方法

    Linux/Centos下释放内存和缓存方法 $ free -m 运行sync将dirty的内容写回硬盘$ sync 通过修改proc系统的drop_caches清理free的cache$ echo ...

  5. windows线程同步

    一.前言 之前在项目中,由于需要使用到多线程,多线程能够提高执行的效率,同时也带来线程同步的问题,故特此总结如下. 二.windows线程同步机制 windows线程同步机制常用的有几种:Event. ...

  6. 1223. Chernobyl’ Eagle on a Roof(dp)&&poj3783

    经典DP n个鹰蛋 m层楼 刚开始是二分想法 不过当数小于二分的那个值 貌似没发判断 dp[i][j] = min(dp[i][j],max(dp[i-1][k-1],dp[i][j-k]) 选择第k ...

  7. js 中 typeof 的使用

    js中的变量是松散类型(即弱类型)的,可以用来保存任何类型的数据. typeof 可以用来检测给定变量的数据类型,可能的返回值: 'undefined' --- 这个值未定义 'boolean' -- ...

  8. [原创]Android中LocationManager的简单使用,获取当前位置

    Android中LocationManager的提供了一系列方法来地理位置相关的问题,包括查询上一个已知位置:注册/注销来自某个 LocationProvider的周期性的位置更新:以及注册/注销接近 ...

  9. 使用Quartz创建定时任务

    项目开发中经常需要定时循环执行某些任务 比如定时发送报表,定时发送邮件,亦或者定时清理缓存,定时更新数据等等 有些时候可以简单地利用Windows Server的计划任务执行程序 Linux也有相应的 ...

  10. 【笨嘴拙舌WINDOWS】伟大的变革

    "改革"."革命"."变革" 这几个词语毫无疑问是每一个时代必须被呼吁的词语,当一个国家没有人求变时,那是一个时代的悲剧.无论是文景之治,贞 ...