强连通分量(tarjan求强连通分量)
双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍。《挑战程序设计》上有说明。
双dfs代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector> using namespace std;
const int MAXN = 1e4 + ;
vector <int> G[MAXN]; //图的邻接表
vector <int> RG[MAXN]; //图的反向邻接表
vector <int> vs; //后序遍历的顶点顺序表
bool ok[MAXN]; //访问标记
int node[MAXN]; //所属强连通分量的序号
//第一次dfs
void dfs(int u) {
ok[u] = true;
for(int i = ; i < G[u].size() ; i++) {
if(!ok[G[u][i]])
dfs(G[u][i]);
}
vs.push_back(u);
}
//第二次dfs
void rdfs(int u , int k) {
node[u] = k;
ok[u] = true;
for(int i = ; i < RG[u].size() ; i++) {
if(!ok[RG[u][i]])
rdfs(RG[u][i] , k);
}
} int main()
{
int n , m , u , v;
while(~scanf("%d %d" , &n , &m) && (n || m)) {
for(int i = ; i <= n ; i++) {
G[i].clear();
RG[i].clear();
ok[i] = false;
vs.clear();
}
for(int i = ; i < m ; i++) {
scanf("%d %d" , &u , &v);
G[u].push_back(v);
RG[v].push_back(u);
}
//第一次dfs 选取任意的顶点作为起点遍历 后序遍历 越接近图尾部(叶子)的顶点顺序越小
for(int i = ; i <= n ; i++) {
if(!ok[i])
dfs(i);
}
memset(ok , false , sizeof(ok));
int k = ;
//第二次dfs 将边反向遍历 以标记最大的顶点作为起点遍历 这样便可以给强连通分量标号
for(int i = vs.size() - ; i >= ; i--) {
if(!ok[vs[i]])
rdfs(vs[i] , ++k);
}
if(k > ) {
printf("No\n");
}
else {
printf("Yes\n");
}
}
}
tarjan代码虽然比双dfs多,理解也稍微复杂,但是用处比较多,像求LCA 桥 scc之类的问题。
推荐一个学scc的blog,讲的很好。 https://www.byvoid.com/blog/tag/%E5%9C%96%E8%AB%96
代码如下:
//以hdu1269为例
//强连通分量 tarjan算法
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int MAXN = 1e4 + ;
vector <int> G[MAXN]; //临接表
bool instack[MAXN]; //i是否还在在栈里
int sccnum , index; //连通分量数 和时间顺序
int top , st[MAXN]; //存储i的模拟栈
int block[MAXN]; //i所属的连通分量
int low[MAXN] , dfn[MAXN]; //i能最早访问到的点 和时间戳 void tarjan(int u) {
st[++top] = u;
instack[u] = true;
low[u] = dfn[u] = ++index;
for(int i = ; i < G[u].size() ; i++) {
int v = G[u][i];
if(!dfn[v]) { //v点没访问过
tarjan(v);
if(low[v] < low[u]) { //回溯上来 low[v]表示的时间戳(连通分量的根) u和v在一个连通分量里
low[u] = low[v];
}
}
else if(instack[v]) { //v还在栈里 说明u和v在一个连通分量(形成环路) v相当于连通分量的一个根
low[u] = min(low[u] , dfn[v]);
}
}
int v;
if(dfn[u] == low[u]) { //是连通分量的根
sccnum++;
do {
v = st[top--];
block[v] = sccnum;
instack[v] = false;
}while(v != u); //连通分量的所有的点
}
} void init(int n) {
for(int i = ; i <= n ; i++) {
G[i].clear();
instack[i] = false;
dfn[i] = ;
}
sccnum = index = top = ;
} int main()
{
int n , m , u , v;
while(~scanf("%d %d" , &n , &m) && (n || m)) {
init(n);
for(int i = ; i < m ; i++) {
scanf("%d %d" , &u , &v);
G[u].push_back(v);
}
for(int i = ; i <= n ; i++) {
if(!dfn[i]) {
tarjan(i);
}
}
if(sccnum > ) {
cout << "No\n";
}
else {
cout << "Yes\n";
}
}
}
强连通分量(tarjan求强连通分量)的更多相关文章
- UESTC 901 方老师抢银行 --Tarjan求强连通分量
思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...
- tarjan求强连通分量+缩点+割点以及一些证明
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄> 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...
- Tarjan求强连通分量,缩点,割点
Tarjan算法是由美国著名计算机专家发明的,其主要特点就是可以求强连通分量和缩点·割点. 而强联通分量便是在一个图中如果有一个子图,且这个子图中所有的点都可以相互到达,这个子图便是一个强连通分量,并 ...
- tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄> 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...
- HDU 1827 Summer Holiday(tarjan求强连通分量+缩点构成新图+统计入度+一点贪心思)经典缩点入门题
Summer Holiday Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- CCF 高速公路 tarjan求强连通分量
问题描述 某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路. 现在,大臣们帮国王拟了一个修高速公路的 ...
- UVALive 4262——Trip Planning——————【Tarjan 求强连通分量个数】
Road Networks Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Stat ...
- tarjan求强连通分量(模板)
https://www.luogu.org/problem/P2341 #include<cstdio> #include<cstring> #include<algor ...
- Tarjan求强连通分量、求桥和割点模板
Tarjan 求强连通分量模板.参考博客 #include<stdio.h> #include<stack> #include<algorithm> using n ...
随机推荐
- LA 4123 (计数 递推) Glenbow Museum
题意: 这种所有边都是垂直或水平的多边形,可以用一个字符串来表示,一个270°的内角记作O,一个90°的内角记作R. 如果多边形内存在一个点,能看到该多边形所有的点,则这个多边形对应的序列是合法的.这 ...
- OpenSSL再爆多处高危漏洞
OpenSSL团队于北京时间6月5号晚8点左右发布了5个安全补丁,这次的更新涉及多处高危漏洞,连接:http://www.openssl.org/news/ 受影响的版本包括: OpenSSL 1.0 ...
- HDU 1425 sort 【哈希入门】
题意:给出n个数,输出前m大的数 和上一题一样,将输入的数加上一个极大地值作为地址 #include<iostream> #include<cstdio> #include&l ...
- codevs 3732 解方程
神题不可言会. f(x+p)=f(x)(mod p) #include<iostream> #include<cstdio> #include<cstring> # ...
- 求强连通分量模板(tarjan算法)
关于如何求强连通分量的知识请戳 https://www.byvoid.com/blog/scc-tarjan/ void DFS(int x) { dfn[x]=lowlink[x]=++dfn_cl ...
- apache开源项目 -- tez
为了更高效地运行存在依赖关系的作业(比如Pig和Hive产生的MapReduce作业),减少磁盘和网络IO,Hortonworks开发了DAG计 算框架Tez.Tez是从MapReduce计算框架演化 ...
- ISAPI在IIS7上的配置
主要介绍ISAPI的作用.ISAPI在IIS7上的配置.开发ISAPI的基本内容及使用VS 2008配置ISAPI DLL开发项目. 一.ISAPI介绍 缩写词=Internet Server App ...
- 使用rpmbuild来创建自己的RPM
1. 进行创建必须的目录 在6.2的版本中,路径发生了变化,必须在此路径中,否则必须要修改配置文件. 2. 创建脚本文件 编写一个简单的脚本,然后将脚本进行打包为tar.gz格式的压缩文件,并且将其放 ...
- MDI端口和MDIX端口是什么? 又有什么作用?
是网线的标准A类接法和B类接法.也就是人们通常所说的交叉网线和直联网线.直联网线就是 白黄 黄 白绿 蓝 白兰 绿 白棕 棕 另一端同样如此.交叉网线就是 另一端的1和3,2和6对调.这样就成了交叉网 ...
- BS与CS的联系与区别
C/S是Client/Server的缩写.服务器通常采用高性能的PC.工作站或小型机,并采用大型数据库系统,如Oracle.Sybase.InFORMix或SQL Server.客户端需要安装专用的客 ...