一、总体框架

  deferred io机制主要用于驱动没有实现自刷新同时应用层又不想调用FBIOPAN_DISPLAY的一个折中方案,  使用ioctrl FBIOPAN_DISPLAY好处是节能, 驱动不用盲目的刷数据(尤其是一静态帧数据), 数据的更新是由应用程序操作的,

所以应用程序当然知道何时刷数据, 最理想的情况是应用程序一更新数据立马调用FBIOPAN_DISPLAY, 但也有缺点, 一是要应用层显示调用FBIOPAN_DISPLAY,二是画面更新频率高的话, FBIOPAN_DISPLAY带来的系统调用开支也不小;

使用驱动自刷新当然解放应用, 应用不用关心数据显示问题, 直接操作显存, 所写即所见。

二、源码分析

  代码具体在linux/drivers/video/fb_defio.c, 如下演示刷图穿插该框架的实现代码:

  1. fb_defio 自己实现一个mmap(), 没有将用户空间虚拟地址和物理帧缓存进行页表映射, 倒是提供了缺页异常处理函数

void fb_deferred_io_init(struct fb_info *info)
{
struct fb_deferred_io *fbdefio = info->fbdefio; BUG_ON(!fbdefio);
mutex_init(&fbdefio->lock);
info->fbops->fb_mmap = fb_deferred_io_mmap;
INIT_DELAYED_WORK(&info->deferred_work, fb_deferred_io_work);
INIT_LIST_HEAD(&fbdefio->pagelist);
if (fbdefio->delay == ) /* set a default of 1 s */
fbdefio->delay = HZ;
}
EXPORT_SYMBOL_GPL(fb_deferred_io_init); static int fb_deferred_io_mmap(struct fb_info *info, struct vm_area_struct *vma)
{
vma->vm_ops = &fb_deferred_io_vm_ops;
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
if (!(info->flags & FBINFO_VIRTFB))
vma->vm_flags |= VM_IO;
vma->vm_private_data = info;
return ;
} static const struct vm_operations_struct fb_deferred_io_vm_ops = {
.fault = fb_deferred_io_fault,
.page_mkwrite = fb_deferred_io_mkwrite,
};

  2. 应用程序通过mmap(), 获得一块帧缓存的虚拟地址, 但没有对应的实际物理内存

 

  3. 应用程序操作内存(write), 由于页表没有对应物理内存导致缺页异常

do_page_fault()
-> __do_page_fault()
-> handle_mm_fault()
-> __handle_mm_fault()
-> handle_pte_fault():
if (vma->vm_ops) {
if (likely(vma->vm_ops->fault))
return do_linear_fault(mm, vma, address, pte, pmd, flags, entry);
}
                -> __do_fault():
                 vma->vm_ops->fault(vma, &vmf);
                vma->vm_ops->page_mkwrite(vma, &vmf);

  从上面流程可以看出, 当vm_ops且fault有效时, 会走自定义的fault实现, 同时如果操作时write行为, 还会调用page_mkwrite(有效的话)

  4. fb_defio提供了缺页异常的处理函数fb_deferred_io_fault(), 分配物理页跟虚拟地址对应起来, 并把该物理页挂到fbdefio->pagelist(即将被刷新数据), 然后启动工作队列延迟delay后执行这个工作项fb_deferred_io_work()

static int fb_deferred_io_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
unsigned long offset;
struct page *page;
struct fb_info *info = vma->vm_private_data; offset = vmf->pgoff << PAGE_SHIFT;
if (offset >= info->fix.smem_len)
return VM_FAULT_SIGBUS; page = fb_deferred_io_page(info, offset);
if (!page)
return VM_FAULT_SIGBUS; get_page(page); if (vma->vm_file)
page->mapping = vma->vm_file->f_mapping;
else
printk(KERN_ERR "no mapping available\n"); BUG_ON(!page->mapping);
page->index = vmf->pgoff; vmf->page = page;
return ;
} static struct page *fb_deferred_io_page(struct fb_info *info, unsigned long offs)
{
void *screen_base = (void __force *) info->screen_base;
struct page *page; if (is_vmalloc_addr(screen_base + offs))
page = vmalloc_to_page(screen_base + offs);
else
page = pfn_to_page((info->fix.smem_start + offs) >> PAGE_SHIFT); return page;
} /* 需要注意的是帧缓存是一开始fb驱动就应该分配好的, 同时赋值给fb_info->screen_base, fb_info->fix.smem_start
* 而fb_deferred_io_fault()-> fb_deferred_io_page()分配内存只是找出并返回此次缺页异常页虚拟地址对应的物理地址,
* 好填充页表, 这样应用程序就可以正常write数据到缓存, 整个过程对应用程序是透明的。
*/

  5. fb_deferred_io_work() 最核心就是调用函数指针fbdefio->deferred_io(驱动要实现的刷数据函数), 并调用page_mkclean()将之前虚拟地址和帧物理页的映射清除, 使得下次操作这块虚拟地址又能重新触发缺页机制

  

二、fb驱动示例

static void lcd_fb_deferred_io(struct fb_info *info, struct list_head *pagelist)
{
struct page *cur;
struct fb_deferred_io *fbdefio = info->fbdefio; /* pagelist存放的都是被更新的脏页, 由于我驱动用SPI DMA搬数据,会存在cache不一致, 所以要把cache的缓存刷回内存 */
list_for_each_entry(cur, &fbdefio->pagelist, lru) {
flush_dcache_page(cur);
} /* 虽然pagelist存放都是脏页,我懒得对这些页在帧的位置进行排布分析, 直接一整帧都刷
也即哪怕应用程序改动一个page, 驱动都会整帧刷*/
info->fbops->fb_pan_display(&info->var , info);
} static struct fb_deferred_io gen_lcd_fb_defio = {
.delay = HZ / ,
.deferred_io = lcd_fb_deferred_io,
}; static void lcd_defio_init(struct fb_info *info, struct fb_deferred_io *fbdefio)
{
info->fbdefio = fbdefio;
fb_deferred_io_init(info);
} static void lcd_defio_cleanup(struct fb_info *info)
{
if (info->fbdefio != NULL) {
fb_deferred_io_cleanup(info);
info->fbdefio = NULL;
}
} ==========================================
lcd_defio_init(fb_dev, gen_lcd_fb_defio)
lcd_defio_cleanup(fb_dev)

三、其他

  1. 要使能deferred io机制, 要打开CONFIG_FB_DEFERRED_IO配置

  2. 这里没有帧率说法, 只跟应用刷图有关

  3. 缺页异常会被调用多次, 但fb_deferred_io_work()只会被最后页调用一次, 比如应用要刷,2个page, 第一个page导致fb_deferred_io_mkwrite()添加到pagelist, 然后调用schedule_delayed_work()启动延迟1/8s的工作项fb_deferred_io_work(),

   接着引发第二页缺页异常会被继续添加到pagelist, schedule_delayed_work再次被执行, 但只是重新更新延迟时间为1/8s

  4. 我感觉page_mkclean() 这里有个bug, 它是把物理页所有的映射都清除, 包括kernel空间的虚拟地址, 那下次缺页异常时fb_deferred_io_page() -> vmalloc_to_page(screen_base + offs), 就会有问题, 因为页表被清除掉了, 所以该框架目前应该只支持连续的帧缓存

Linux framebuffer deferred io机制的更多相关文章

  1. Linux framebuffer deferred io机制【转】

    转自:https://www.cnblogs.com/vedic/p/10722514.html 一.总体框架 deferred io机制主要用于驱动没有实现自刷新同时应用层又不想调用FBIOPAN_ ...

  2. Linux的io机制

    Linux的io机制 Buffered-IO 和Direct-IO Linux磁盘I/O分为Buffered IO和Direct IO,这两者有何区别呢? 对于Buffered IO: 当应用程序尝试 ...

  3. linux下epoll实现机制

    linux下epoll实现机制 原作者:陶辉 链接:http://blog.csdn.net/russell_tao/article/details/7160071 先简单回顾下如何使用C库封装的se ...

  4. 深入理解JAVA I/O系列六:Linux中的IO模型

    IO模型 linux系统IO分为内核准备数据和将数据从内核拷贝到用户空间两个阶段. 这张图大致描述了数据从外部磁盘向运行中程序的内存中移动的过程. 用户空间.内核空间 现在操作系统都是采用虚拟存储器, ...

  5. Linux优化之IO子系统监控与调优

    Linux优化之IO子系统 作为服务器主机来讲,最大的两个IO类型 : 1.磁盘IO 2.网络IO 这是我们调整最多的两个部分所在 磁盘IO是如何实现的 在内存调优中,一直在讲到为了加速性能,linu ...

  6. Linux SCSI回调IO的分析

    本文转载自:http://blog.csdn.net/xushiyan/article/details/6941640,如需参考,请访问原始链接地址. 没找到如何转载的入口,只好全文copy了. -- ...

  7. 深入理解JAVA I/O系列六:Linux中的IO模型(转载的文章非常值得学习)

    From:http://www.cnblogs.com/dongguacai/p/5770287.html IO模型 linux系统IO分为内核准备数据和将数据从内核拷贝到用户空间两个阶段. 这张图大 ...

  8. [转载] Linux五种IO模型

      转载:http://blog.csdn.net/jay900323/article/details/18141217     Linux五种IO模型性能分析   目录(?)[-] 概念理解 Lin ...

  9. Linux Framebuffer驱动剖析之一—软件需求

    嵌入式企鹅圈将以本文作为2015年的终结篇,以回应第一篇<Linux字符设备驱动剖析>.嵌入式企鹅圈一直专注于嵌入式Linux和物联网IOT两方面的原创技术分享,稍后会发布嵌入式企鹅圈的2 ...

随机推荐

  1. list control控件的一些操作

    一.添加数据 这里介绍的是最平常的添加方法,当然也有很多其他比较好的方法.这里要非常注意添加顺序.先上代码: //导入excel文档中的内容到list中 CoInitialize(NULL); if ...

  2. Java NIO 概览

    Java面试通关手册(Java学习指南) Github地址:https://github.com/Snailclimb/Java_Guide 一 NIO简介 Java NIO 是 java 1.4 之 ...

  3. css3波纹特效、H5实现动态波浪

    css3实现动态波纹特效,由于css3里面有过渡和动画效果,现在利用css3实现动态波浪效果就很简单了,直接使用transform来实现就ok, 使得translateX 产生偏移就可以不断实现循环动 ...

  4. java中的数组二分法

    数组二分法意在以较快的速度查找到某个值的下标位置. 二分法的核心思想:找到一个数组的中间位置值,判断某个数值是在这个中间值的左边还是右边,如果是左边,将中间位置之前进行二分,二分后,结束位置变为原始中 ...

  5. 使用Akka的远程调用

    概述 正如其它RPC或者RMI框架那样,Akka也提供了远程调用的能力.服务端在监听的端口上接收客户端的调用.本文将在<Spring与Akka的集成>一文的基础上介绍Akka的remote ...

  6. Java数据结构之堆和优先队列

    概述 在谈堆之前,我们先了解什么是优先队列.我们每天都在排队,银行,医院,购物都得排队.排在队首先处理事情,处理完才能从这个队伍离开,又有新的人来排在队尾.但仅仅这样就能满足我们生活需求吗,明显不能. ...

  7. python --- 快速排序算法

    在快速排序中引入递归和分治的概念(关于递归和分治的概念会单独写一篇来进行介绍) 问的解决思路: 快速排序的基本思想本身就是分治法,通过分割,将无序序列分成两部分,其中前一部分的元素值都要小于后一部分的 ...

  8. Java语言编程 - Java第一个程序HelloWorld

    3.1 新建Java文件 首先新建一个文件夹,用于存放写的Java程序,例如我存放Java程序的位置为” D:\Files\code\java”. 在该文件夹中,右键新建一个文本文档 将文件名重命名为 ...

  9. .net core webapi 前后端开发分离后的配置和部署

    背景:现在越来越多的企业都采用了在开发上前后端分离,前后端开发上的分离有很多种,那么今天,我来分享一下项目中得的前后端分离. B/S  Saas 项目:(这个项目可以理解成个人中心,当然不止这么点功能 ...

  10. 『片段』ShellHelper 控制台程序 的 程序调用(支持输入命令得到返回字符串输出)

    背景: > 之前做 OGG 时,被 OGG的配置 恶心到了.(OGG是啥,这里就不解释了) > 总之就是一个 控制台程序,总是得手动执行一堆命令,每次都得输入 —— 实在是打字打累了. & ...