4555: [Tjoi2016&Heoi2016]求和

题意:求$$

\sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \

S是第二类斯特林数

\[
***

首先你要把这个组合计数肝出来,~~于是我去翻了一波《组合数学》~~

*分治fft做法见上一篇,本篇是容斥原理+fft做法*

</br>
###组合计数

**斯特林数** $S(n,i)$表示将n个不同元素划分成i个相同集合非空的方案数
</br>
考虑**集合不相同**情况$S'(n,i)=S(n,i)*i!$,我们用**容斥原理**推♂倒她
\]

每个集合非空的限制太强了,我们弱化它,可以有\ge k个空集合 \

ans = \ge 0个空集合 - \ge 1个空集合 + \ge 2 个空集合 \

S'(n,i) = \sum_{k=0}^{i} (-1)^k \binom{i}{k} (i-k)^n \

\[最后的$(i-k)^n$含义是n个元素每个可以放入任意一个集合中

</br>
然后把这个式子带进去化啊化,具体过程[WerKeyTom_FTD大爷已经写过了](http://blog.csdn.net/WerKeyTom_FTD/article/details/51909966)
**注意有一步把第一个带着i的求和移到最后,是一个等比数列求和**
最后得到的是
\]

ans=\sum_{j=0}nj!*2j\sum_{k=0}j\frac{(-1)k}{k!}\frac{\sum_{i=0}n(j-k)i}{(j-k)!}

\[后面是卷积的形式,一遍ntt就行了

```cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=(1<<18)+5, INF=1e9;
const ll P=998244353, g=3;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}

ll Pow(ll a, ll b) {
ll ans=1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}

namespace ntt{
int n, rev[N];
void ini(int lim) {
n=1; int k=0;
while(n<lim) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
}
void dft(ll *a, int flag) {
for(int i=0; i<n; i++) if(i<rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m=l>>1;
ll wn = Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l);
for(ll *p=a; p!=a+n; p+=l) {
ll w=1;
for(int k=0; k<m; k++) {
ll t = w * p[k+m]%P;
p[k+m]=(p[k]-t+P)%P;
p[k]=(p[k]+t)%P;
w=w*wn%P;
}
}
}
if(flag==-1) {
ll inv=Pow(n, P-2);
for(int i=0; i<n; i++) a[i]=a[i]*inv%P;
}
}
void mul(ll *a, ll *b) {
dft(a, 1); dft(b, 1);
for(int i=0; i<n; i++) a[i]=a[i]*b[i];
dft(a, -1);
}
}using ntt::ini; using ntt::mul;

int n, rev[N];
ll inv[N], fac[N], facInv[N];
ll f[N], a[N], b[N];

int main() {
freopen("in","r",stdin);
n=read();
inv[1]=1; fac[0]=facInv[0]=1;
for(int i=1; i<=n; i++) {
if(i!=1) inv[i] = (P-P/i)*inv[P%i]%P;
fac[i] = fac[i-1]*i%P;
facInv[i] = facInv[i-1]*inv[i]%P;
}
a[0]=1; b[0]=1; b[1]=n+1;
for(int i=1; i<=n; i++) a[i] = (i&1 ? -1 : 1) * facInv[i];
for(int i=2; i<=n; i++) b[i] = (Pow(i, n+1)-1) * inv[i-1] %P * facInv[i] %P;
ini(n+n+1); mul(a, b);
ll ans=0;
for(int i=0; i<=n; i++) ( ans += Pow(2, i)*fac[i]%P * a[i]%P )%=P;
if(ans<0) ans+=P;
printf("%lld", ans);
}

```\]

BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]的更多相关文章

  1. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  2. 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

    [题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...

  3. bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化

    [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 679  Solved: 534[Submit][S ...

  4. [BZOJ 4555][Tjoi2016&Heoi2016]求和

    题意 给定 $n$ , 求下式的值: $$ f(n)= \sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix}i\\ j\end{Bmatrix}\times 2^j\time ...

  5. BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)

    题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...

  6. BZOJ 4555 [Tjoi2016&Heoi2016]求和 (多项式求逆)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=4555 题目大意: 给定 \(S(n,m)\) 表示第二类斯特林数,定义函数 \(f(n ...

  7. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  8. bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...

  9. bzoj 4555: [Tjoi2016&Heoi2016]求和【NTT】

    暴力推式子推诚卷积形式,但是看好多blog说多项式求逆不知道是啥.. \[ \sum_{i=0}^{n}\sum_{j=0}^{n}S(i,j)*2^j*j! \] \[ S(i,j)=\frac{1 ...

随机推荐

  1. Sublime Text 3.0版本的傻瓜式汉化步骤

    Sublime text 3是非常好的文本编辑器,在试用过N款文本编辑器(Notepad.Notepad++.Notepad2.Programmer's notepad.EditPlus,Vim, T ...

  2. JXLS 2.4.0系列教程(四)——拾遗 如何做页面小计

    注:阅读本文前,请先阅读第四篇文章. http://www.cnblogs.com/foxlee1024/p/7619845.html 前面写了第四篇教程,发现有些东西忘了讲了,这里补回来. 忘了讲两 ...

  3. 在阿里云服务器上安装完成并启动Tomcat后,通过http不能访问--解决办法

    在阿里云服务器上安装完成并启动Tomcat后,通过http不能访问的原因是阿里云平台为了安全设置了安全组策略,必须我们授权的端口,其他计算机才能通过http访问 解决办法:(这里以阿里轻量应用服务器为 ...

  4. 如何控制input框!

    ENTER键可以让光标移到下一个输入框  只能是中文   屏蔽输入法   只能输入英文和数字   只能是数字 只能显示,不能修改 只能输数字,判断按键的值 function   onlyNum() { ...

  5. Uva10129 - Play on Words 欧拉通路 DFS

    题目链接: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=105& ...

  6. Python3 的元组

    元组(tuple):戴上了枷锁的列表 元组与列表非常相似但是元组内元素的类型相同,且元组内的元素不能修改 1.创建元组的方法 与列表不同创建元组大部分情况下是用小括号,例如 tuple1=(1,2,3 ...

  7. Android ListView 设置单选

    为 ListView 设置选中状态,需要经过如下几个步骤: 设置 ListView 的 android:choiceMode="singleChoice" 设置 ListView ...

  8. 经典CSS坑:如何完美实现垂直水平居中?

    经典CSS坑:如何完美实现垂直水平居中? 踩了各种坑之后总结出的方法,开门见山,直接上代码和效果图.希望对读者有所帮助,后续如果有更好的方法,我也会持续更新 第一种方法:transform(个人认为最 ...

  9. sqllite小型数据库的使用

    1.适用场景:免安装型数据库:数据量不大,本地化管理:不依赖其他第三方类库:2.具体使用方法:添加sqllite类库引用 数据库连接定义,数据库以文件形式存储在sqllitedb/solution.d ...

  10. linux 中nvme 的中断申请及处理

    /** * struct irq_desc - interrupt descriptor * @irq_data: per irq and chip data passed down to chip ...